JAPAN’s GV Strategy and Plans for GPM

Slides:



Advertisements
Similar presentations
Radar/lidar observations of boundary layer clouds
Advertisements

Calibration of GOES-R ABI cloud products and TRMM/GPM observations to ground-based radar rainfall estimates for the MRMS system – Status and future plans.
A Microwave Retrieval Algorithm of Above-Cloud Electric Fields Michael J. Peterson The University of Utah Chuntao Liu Texas A & M University – Corpus Christi.
Terry Schuur Weather Radar Research Meteorological Observations in Support of Dual Polarization Research.
Water vapor estimates using simultaneous S and Ka band radar measurements Scott Ellis, Jothiram Vivekanandan NCAR, Boulder CO, USA.
TRMM Tropical Rainfall Measurement (Mission). Why TRMM? n Tropical Rainfall Measuring Mission (TRMM) is a joint US-Japan study initiated in 1997 to study.
MICROWAVE RAINFALL RETRIEVALS AND VALIDATIONS R.M. GAIROLA, S. POHREL & A.K. VARMA OSD/MOG SAC/ISRO AHMEDABAD.
Rainfall Monitioring Using Dual-polarization Radars Alexander Ryzhkov National Severe Storms Laboratory / University of Oklahoma, USA.
ATS 351 Lecture 8 Satellites
Using Scatterometers and Radiometers to Estimate Ocean Wind Speeds and Latent Heat Flux Presented by: Brad Matichak April 30, 2008 Based on an article.
Atmospheric structure from lidar and radar Jens Bösenberg 1.Motivation 2.Layer structure 3.Water vapour profiling 4.Turbulence structure 5.Cloud profiling.
Contrasting Tropical Rainfall Regimes Using TRMM and Ground-Based Polarimetric Radar by S. A. Rutledge, R. Cifelli, T. Lang and S. W. Nesbitt EGU 2009.
Bredbeck Workshop, 7 – 10 July 2003 Jörg Schulz Meteorological Institute, University of Bonn Harald Czekala RPG Radiometer.
Jan 28, 2008Symposium on Imaging Ground-based and Space- based Radar Precipitation Imaging V.Chandrasekar Colorado state University January 28, 2008.
/5/2001 GPM Planning Workship Ka-band Radar for GPM: Issues Toshio Iguchi Communications Research Laboratory The Global Precipitation Mission Planning.
Spaceborne Weather Radar
Basic RADAR Principles Prof. Sandra Cruz-Pol, Ph.D. Electrical and Computer Engineering UPRM.
Drop size distribution from WXT weather transmitter? Heikki Pohjola, Application specialist Thanks to Elena.
Testing of V1. GPM algorithm of rainfall retrieval from microwave brightness temperatures - preliminary results using TRMM observations Chuntao Liu Department.
Global Precipitation Measurement – Dual Frequency Precipitation Radar Yong Xiang Teoh EECS823 December 11,
Applications and Limitations of Satellite Data Professor Ming-Dah Chou January 3, 2005 Department of Atmospheric Sciences National Taiwan University.
SMOS+ STORM Evolution Kick-off Meeting, 2 April 2014 SOLab work description Zabolotskikh E., Kudryavtsev V.
CARPE-DIEM 13/6/02, slide 1German Aerospace Center Microwaves and Radar Institute CARPE-DIEM Besprechung Helsinki, June 2004 Ewan.
Precipitation Retrievals Over Land Using SSMIS Nai-Yu Wang 1 and Ralph R. Ferraro 2 1 University of Maryland/ESSIC/CICS 2 NOAA/NESDIS/STAR.
A Combined Radar/Radiometer Retrieval for Precipitation IGARSS – Session 1.1 Vancouver, Canada 26 July, 2011 Christian Kummerow 1, S. Joseph Munchak 1,2.
Profilers & Surface Gauges NE Corner of Stuart Hwy & McMillans 2835-MHz Precip. Profiler: km 920-MHz Wind Profiler: km 50-MHz Wind Profiler:
Validation of TRMM rainfall products at Gadanki T. Narayana Rao NARL, Gadanki K. Nakamura, HyARC, Nagoya, Japan D. Narayana Rao, NARL, Gadanki National.
Boundary layer temperature profile observations using ground-based microwave radiometers Bernhard Pospichal, ISARS 2006 Garmisch-Partenkirchen AMMA - Benin.
The Role of Polarimetric Radar for Validating Cloud Models Robert Cifelli 1, Timothy Lang 1, Stephen Nesbitt 1, S.A. Rutledge 1 S. Lang 2, and W.K. Tao.
© TAFE MECAT 2008 Chapter 6(b) Where & how we take measurements.
Cabauw Experimental Site for Atmospheric Research - CESAR - Henk Klein Baltink Atmospheric Research Section.
Use of Profilers in TRMM Ground Validation Kenneth Gage 1, and Christopher Williams 1,2 1 NOAA Aeronomy Laboratory, Tropical Dynamics and Climate Group.
Canada Global Precipitation Mission Paul Joe Meteorological Service of Canada.
1 Development Of Space-borne Rain Radar In China: The First Results From Airborne Dual- Frequency Rain Radar Field Campaign Hu Yang, Honggang Yin, Jian.
Dual-Polarization and Dual-Wavelength Radar Measurements Vivek National Center for Atmospheric Research Boulder, Colorado I.Polarization and dual- wavelength.
- JAXA Agency Report - Osamu OCHIAI JAXA/EORC WGISS#18, SG#17 Sept. 6-10, 2004.
Robin Hogan Ewan O’Connor The Instrument Synergy/ Target Categorization product.
Radiometer Physics GmbH
Introduction to NASA Water Products NASA Remote Sensing Training Norman, Oklahoma June 19-20, 2012 ARSET Applied Remote SEnsing Training A project of NASA.
KNMI 35 GHz Cloud Radar & Cloud Classification* Henk Klein Baltink * Robin Hogan (Univ. of Reading, UK)
Improvement of Cold Season Land Precipitation Retrievals Through The Use of Field Campaign Data and High Frequency Microwave Radiative Transfer Model IPWG.
Kazumasa Aonashi (MRI/JMA) Takuji Kubota (Osaka Pref. Univ.) Nobuhiro Takahashi (NICT) 3rd IPWG Workshop Oct.24, 2006 Developnemt of Passive Microwave.
A Global Rainfall Validation Strategy Wesley Berg, Christian Kummerow, and Tristan L’Ecuyer Colorado State University.
Ice-Phase Precipitation Remote Sensing Using Combined Passive and Active Microwave Observations Benjamin T. Johnson UMBC/JCET & NASA/GSFC (Code 613.1)
CRL’s Planned Contribution to GPM Harunobu Masuko and Toshio Iguchi Applied Research and Standards Division Communications Research Laboratory 4-2-1, Nukkui-kita-machi,
TRMM TMI Rainfall Retrieval Algorithm C. Kummerow Colorado State University 2nd IPWG Meeting Monterey, CA. 25 Oct Towards a parametric algorithm.
Challenges and Strategies for Combined Active/Passive Precipitation Retrievals S. Joseph Munchak 1, W. S. Olson 1,2, M. Grecu 1,3 1: NASA Goddard Space.
Satellites Storm “Since the early 1960s, virtually all areas of the atmospheric sciences have been revolutionized by the development and application of.
Basis of GV for Japan’s Hydro-Meteorological Process Modelling Research GPM Workshop Sep. 27 to 30, Taipei, Taiwan Toshio Koike, Tobias Graf, Mirza Cyrus.
BACKSCATTERING FROM SEA SURFACE WITH PRECIPITATION
An Outline for Global Precipitation Mission Ground Validation: Building on Lessons Learned from TRMM Sandra Yuter and Robert Houze University of Washington.
A New Ocean Suite Algorithm for AMSR2 David I. Duncan September 16 th, 2015 AMSR Science Team Meeting Huntsville, AL.
Active and passive microwave remote sensing of precipitation at high latitudes R. Bennartz - M. Kulie - C. O’Dell (1) S. Pinori – A. Mugnai (2) (1) University.
G O D D A R D S P A C E F L I G H T C E N T E R TRMM Tropical Rainfall Measuring Mission 2nd GPM GV Workshop TRMM Ground Validation Some Lessons and Results.
NICT JAXA 1 Workshop Objectives [ Eric A. Smith -- NASA/GSFC ] Global Precipitation Measurement Mission.
UNIVERSITY OF BASILICATA CNR-IMAA (Consiglio Nazionale delle Ricerche Istituto di Metodologie per l’Analisi Ambientale) Tito Scalo (PZ) Analysis and interpretation.
Developing Winter Precipitation Algorithm over Land from Satellite Microwave and C3VP Field Campaign Observations Fifth Workshop of the International Precipitation.
Passive Microwave Remote Sensing
GPM Mission Overview and Status
Structure of the general part
SOLab work description
Space-Based Precipitation Measurements
Chap IV. Fundamentals of Radar Beam propagation
Radar/Surface Quantitative Precipitation Estimation
Microwave Remote Sensing
The Global Satellite Mapping of Precipitation (GSMaP) project: Integration of microwave and infrared radiometers for a global precipitation map Tomoo.
Radiometer Physics GmbH
Atmospheric Profile(s):
D. C. Stolz, S. A. Rutledge, J. R. Pierce, S. C. van den Heever 2017
JDS international seminar
Presentation transcript:

JAPAN’s GV Strategy and Plans for GPM K. Nakamura (HyARC/Nagoya Univ.) and S. Shimizu (JAXA)

Objectives of Japanese GPM Cal/Val To confirm the reliability of the GPM standard products, To quantify the error of the products and confirm the characteristics, To clarify the origin of the error of the products and feed it back to modify the algorithms and To validate the algorithms using the physical parameters observed or estimated from the ground validation activities.

PR algorithm concept Stratiform Snow Rain Height PR Radar reflectivity Melting Layer Rain これも今さらという気がするが、PR/DPRのアルゴリズムコンセプトを説明する。これにより後に続く検証についての説明につなげる。 二周波レーダのよい点を言うと、雨の領域では TRMM/PR では推定できなかった雨滴粒径分布の情報が観測される。 (原理的にはD0とN0が独立に推定できる) TRMM/PR ではアルゴリズムで使用する量であった 雨滴粒径分布がDPRで観測される物理量になる。 (アルゴリズムの検証ではなく、推定される物理量として検証) しかし、雨域より上空の融解層では、 固相の粒子の平均密度、平均粒径、平均個数の3つがわからず、 そのままでは2周波としてもとくのは無理。 何らかの現実的な仮定を導入する必要があり。 また、KaPR では、TRMM/PR では あまり影響しなかった大気、水蒸気、雲粒子の減衰が影響してくるので こちらに関しても何か適当なモデルを利用せざるを得ない Radar reflectivity Rain attenuation  Surface Reference Method Drop Size Distribution  External Parameter (In the algorithm)

DPR algorithm concept Stratiform Snow Rain Height KuPR KaPR Detectable range of KaPR (35 GHz) Detectable range of KuPR (14 GHz) Height Stratiform Sensitive observation by the KaPR Discrimination of snow and rain using differential attenuation method Snow KuPR Melting Layer KaPR Rain Accurate rainfall estimation using differential attenuation method (DSD parameter estimation) 二周波レーダのよい点を言うと、雨の領域では TRMM/PR では推定できなかった雨滴粒径分布の情報が観測される。 (原理的にはD0とN0が独立に推定できる) TRMM/PR ではアルゴリズムで使用する量であった 雨滴粒径分布がDPRで観測される物理量になる。 (アルゴリズムの検証ではなく、推定される物理量として検証) しかし、雨域より上空の融解層では、 固相の粒子の平均密度、平均粒径、平均個数の3つがわからず、 そのままでは2周波としてもとくのは無理。 何らかの現実的な仮定を導入する必要があり。 また、KaPR では、TRMM/PR では あまり影響しなかった大気、水蒸気、雲粒子の減衰が影響してくるので こちらに関しても何か適当なモデルを利用せざるを得ない DPRになって、Validationの項目が増えている。 Radar reflectivity Rain Region: Dual Frequency Drop Size Distribution (N0, D0) Rain attenuations Ice/Snow Region: insufficient for three parameters : (N0, D0, r)

GPM/DPR vs TRMM/PR on algorithm Attenuation TRMM/PR (Ku-band) (Rain) DSD uncertainty GPM/DPR KuPR (Ku-band) (Rain) KaPR (Ka-band) (Rain) + (Cloud) + (Water Vapor) + (gases) Rain attenuation correction will be improved. New uncertain terms: attenuation by cloud, water vapor, and gases 二周波レーダのよい点を言うと、雨の領域では TRMM/PR では推定できなかった雨滴粒径分布の情報が観測される。 (原理的にはD0とN0が独立に推定できる) TRMM/PR ではアルゴリズムで使用する量であった 雨滴粒径分布がDPRで観測される物理量になる。 (アルゴリズムの検証ではなく、推定される物理量として検証) しかし、雨域より上空の融解層では、 固相の粒子の平均密度、平均粒径、平均個数の3つがわからず、 そのままでは2周波としてもとくのは無理。 何らかの現実的な仮定を導入する必要があり。 また、KaPR では、TRMM/PR では あまり影響しなかった大気、水蒸気、雲粒子の減衰が影響してくるので こちらに関しても何か適当なモデルを利用せざるを得ない Other difficulties Beam filling: same as TRMM/PR Beam matching new problem

GPM/DPR Calibration and Validation Engineering values Algorithm Physical values Calibration (by ARC) Transmit power, Received power, Antenna beam direction Assumption (Initial values) Precip. type classification (Conv./Strat.), Particle type (Rain/Snow/Graupel), (DSD (Drop Size Distribution)), Temp. & humidity profile, Melting layer model, Gaseous attenuation, … Verification 工学値 → (アルゴリズム) → 物理量 工学値は ARCによる校正の範疇 (アルゴリズム)と物理量が検証の対象になる Precip. rate/accumulation, Precip. type classification (Conv./Strat.), Particle type (Rain/Snow/Graupel), DSD (Drop Size Distribution) , … Validation

From TRMM experiences Simple comparison is never enough. Ground-based radar data (especially radar reflectivity value) are depended on the radars. TRMM is too good to be validated by regression-based traditional validation. Temporal/spatial mismatching is still problem. Precise and comprehensive precipitation system measurement is required. Physical validation may be more important for radar rain retrieval as well as microwave rain retrieval. Very few occasions of simultaneous observations between GV instruments and satellite, especially PR. TRMMのときの経験から、GPMにおける検証は以下のように行うべきである。 ・単純なプロダクトの比較は十分ではない。 TRMMの性能は、地上検証から得られる結果よりも良い。言い換えれば宇宙からの観測は十分に正確なものである。 ・より正確に降雨推定を行うための検証が必要となる → Physical validation ・アルゴリズムの中で仮定していることに対して、validationを行う ・physical validationを行うために測器を集めたスーパーサイトが必要となる。→ 沖縄サイト

Japanese GV activities Japanese calibration and validation will focus on DPR in GPM. More accurate and sensitive cal/val analyses will be required. Validation for snow rate will be required for DPR. Post-launch beam matching measurement between two radars (new task of external cal. for GPM/DPR) using multiple ARCs Algorithm specific validation for each rain retrieval algorithm of DPR will be required. For this purpose, we need to develop new paradigm of algorithm validation and collect many kinds of physical parameters for Special validation sites are required for the physical validation.  We need to establish Super sites for DPR GV (Okinawa, Wakkanai) Statistical comparison with long-term precipitation data using operational data. For this purpose, we need to collect operational raingauge data (e.g. AMeDAS data) and other operational data.

GV New Paradigm Example with PR/DPR True values in Nature ⑨ Compare ⑩ Reflectivity (Ze), Rain Rate (R) ① ② ③ ④ Compare Hydrometeor (Rain, Snow, Graupel, etc.) Remote Sensing GV algorithm GV data Rain Rate (R(h)) Vertical velocity (v(D)) DSD(h), v(D), Particle type, Zm, PWC, etc ⑦ Compare Rain (snow) water content (PWC(h)) Density ( (h)) Drop Size Disribution, etc In-situ measurement ⑧ Compare Synthesized Nature GV algorithm Numerical models Retrival DSD(h) Reproduce physical parameters for forward calculation from ground-based observation using GV algorithms Assumption ⑤ v(D) Particle types DSD, v(D) Non-Uniformity, etc. 井口さんから提案されているアルゴリズム検証のフローをベースに、検証計画案を作成している。 打ち上げまではアルゴリズムの開発と検証手法の確立は、お互いに情報交換を行いながら、平行して行う必要がある。 まず検証手法を確立させるため、2004年沖縄梅雨観測のデータをテストケースとして、解析を行う。 Particle types Compare ⑥ Water vapor Cloud water content (Liquid, Solid) Oxygen Aerosol Sea Surface Temperature Noise, etc forward calculation Zm14 Zm35 Retrieval Algorithm Rain rate (R(h)) (Iguchi, 2004)

Key issues for success of GV activities How do we synthesize physical parameters from GV data? We need to collect appropriate observation data. We need to investigate and collect existing observation data. Whether are existing datasets enough for reproducing physical parameters for forward calculation or not? New observation for GV will be need before launch of GPM-Core satellite. We need to establish GV algorithms for reproducing physical parameters. We need to validate the physical parameters retrieved by GV observations. We need to make Zm data by forward calculation.

Candidates for GPM GV Supersite International Arctic Environmental Research Project Group Upper air observation by VHF radar Wakkanai (45.5N, 142E) Okinawa Subtropical Environment Remote Sensing Center - C-band multiparameter radar, wind profiler, etc. Okinawa (26N, 128E) Campaign observation in Okinawa was carried out in May and June 2004 for CREST-GSMaP activity. Now we start to investigate the data for GPM GV.

Issues Validation for solid precipitation Algorithms and validation methods for retrieval of solid precipitation have not established. (Physical parameters for DPR algorithm development have not been clear.) Density, N0, D0  Snow rate N0 and D0 can be derived by dual frequency radar for rain rate. But we have three parameters for snow. Statistics of snow density is required. We will try to get upper layer data above melting level at Okinawa. Conventional method using polarization radar for the classification of solid particles. Spectrum differences in C, Ku, Ka and W for detection of terminal velocity of snow. We need to collect snow rate and other physical parameters in NiCT Wakkanai during winter season using wind profilers, Ku/W-band radars, multi-parameter radar, etc before launch of GPM-core satellite. Continuous validation analyses using statistical methods will be needed after the launch.

Summary DPR is steadily being developed by JAXA and NiCT for the launch of GPM-Core satellite in winter on 2010. Japanese calibration and validation will focus on DPR in GPM. New GV paradigm for DPR is proposed. We are now designing Japanese GV plan based on the new paradigm. Construction of adequate physical parameter database for forward calculation is the most important and concerning problem.