PowerPoint ® Lecture Slides prepared by Barbara Heard, Atlantic Cape Community College C H A P T E R © 2013 Pearson Education, Inc.© Annie Leibovitz/Contact.

Slides:



Advertisements
Similar presentations
Membrane Transport II Active and vesicular transport across membranes
Advertisements

Cells: The Living Units: Part B
Cells: The Living Units: Part B.  Two types of active processes: ◦ Active transport ◦ Vesicular transport  Both use ATP to move solutes across a living.
PowerPoint ® Lecture Slides prepared by Janice Meeking, Mount Royal College C H A P T E R Copyright © 2010 Pearson Education, Inc. 3 Cells: The Living.
Chapter 3 Cells: The Living Unit Part B Shilla Chakrabarty, Ph.D.
Lecture 14 plasma membrane transport Active transport pp73-77
MOVEMENT ACROSS MEMBRANES
CELL TRANSPORTATION Cell membranes are selectively permeable, controlling the entrance and exit of all nutrients, wastes and other molecules in order to.
PowerPoint ® Lecture Slides prepared by Janice Meeking, Mount Royal College C H A P T E R Copyright © 2010 Pearson Education, Inc. 3 Cells: The Living.
Cells Part 2.
Membrane Dynamics 5.
Fluid Mosaic Model Figure 3.3. Functions of Membrane Proteins  Transport  Enzymatic activity  Receptors for signal transduction Figure
Transport Mechanisms The four major categories of transport: filtration diffusion mediated transport vesicular transport.
Biology 11 Human Biology, TTh 8;00-9:20 Dr. Telleen Lecture 5 Cell Membrane Transport.
Active Transport. Quite often substances need to move against their concentration gradient. Active Transport allows this to happen.
Active Transport. Cellular energy is used to to transport substances across the membrane against a concentration gradient Energy is derived from splitting.
Vander’s Human Physiology The Mechanisms of Body Function Tenth Edition by Widmaier Raff Strang © The McGraw-Hill Companies, Inc. Figures and tables from.
ACTIVE TRANSPORT Energy Used to Move Cellular Materials.
ACTIVE TRANSPORT. LEARNING GOALS We need to understand the basic process of transport across a plasma membrane. We are learning... To understand the difference.
PowerPoint ® Lecture Slides prepared by Barbara Heard, Atlantic Cape Community College C H A P T E R © 2013 Pearson Education, Inc.© Annie Leibovitz/Contact.
Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Human Anatomy & Physiology SEVENTH EDITION Elaine N. Marieb Katja Hoehn PowerPoint.
Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Human Anatomy & Physiology SEVENTH EDITION Elaine N. Marieb Katja Hoehn PowerPoint.
A. Active Transport a. Active transport is the transport of a substance across the cell membrane against its concentration gradient (from low to high.
Cellular Communication Transport across cell membrane Lecture 2 Page
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings Human Anatomy & Physiology, Sixth Edition Elaine N. Marieb PowerPoint ® Lecture.
Cell Theory The cell is the basic structural and functional unit of life Organismal activity depends on individual and collective activity of cells.
Cells and Their Environment. Cell membranes – function to communicate between neighboring cells. They also serve as a selectively permeable barrier. It.
5-2: Active Transport. What is Active Transport? In many cases, cells must move materials up their concentration gradient, from an area of low concentration.
Membrane Dynamics Cell membrane structures and functions –Membranes form fluid body compartments –Membranes as barriers and gatekeepers –How products.
PowerPoint ® Lecture Slides prepared by Barbara Heard, Atlantic Cape Community College C H A P T E R © 2013 Pearson Education, Inc.© Annie Leibovitz/Contact.
© 2013 Pearson Education, Inc. Membrane Transport: Active Processes Two types of active processes –Active transport –Vesicular transport Both require ATP.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Active Transport: Two Types
1. Name the three basic parts of a cell and describe the functions of each. 2. Why do phospholipids organize into a bilayer – tail-to-tail – in a watery.
PowerPoint ® Lecture Slides prepared by Barbara Heard, Atlantic Cape Community College C H A P T E R © 2013 Pearson Education, Inc.© Annie Leibovitz/Contact.
Membrane-Bound:NucleusMitochondriaPeroxisomesLysosomes Endoplasmic Reticulum Golgi apparatus, etc. Nonmembranous:CytoskeletonCentrioles Ribosomes.
3.6 How Do Diffusion And Osmosis Affect Transport Across The Plasma Membrane? Simple diffusion through the phospholipid bilayer Fig. 3-7a Simple diffusion.
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings Human Anatomy & Physiology, Sixth Edition Elaine N. Marieb PowerPoint ® Lecture.
Membrane Transport How stuff gets in or out. Membrane Transport Objectives:  Relate membrane structures to transport processes.
MEMBRANE TRANSPORT. Membrane transport—movement of substances into and out of the cell Two basic methods of transport Passive transport No energy is required.
CHAPTER 3 … 3.1 THE CELL MEMBRANE …
Biology Sylvia S. Mader Michael Windelspecht Chapter 5B Membrane Structure and Function Lecture Outline Copyright © The McGraw-Hill Companies, Inc. Permission.
Active Transport Movement of materials through a membrane against a concentration gradient and requires energy from the cell. (ATP) Low Concentration.
PowerPoint ® Lecture Slides prepared by Karen Dunbar Kareiva Ivy Tech Community College © Annie Leibovitz/Contact Press Images Chapter 3 Part B Cells:
In a hypertonic environment, plant cells lose water; eventually, the membrane pulls away from the wall, a usually lethal effect called plasmolysis Video:
Cells: The Living Units Part B
Active Transport Processes
Cells: The Living Units: Part B
Warm-Up Name the three basic parts of a cell and describe the functions of each. Why do phospholipids organize into a bilayer – tail-to-tail – in a watery.
Cells: The Living Units: Part A
Types of Transport.
Warm-Up Name the three basic parts of a cell and describe the functions of each. Why do phospholipids organize into a bilayer – tail-to-tail – in a watery.
3 Cells: The Living Units: Part B.
Active Transport Sections 5.5 & 5.6.
MOVEMENT ACROSS MEMBRANES
Concept 7.4: Active transport uses energy to move solutes against their gradients Facilitated diffusion is still passive because the solute moves down.
Aim: How can we compare carrier mediated and vesicular transport?
3 Cells: The Living Units: Part B.
Cell Physiology: Membrane Transport
Active Transport Chapter 3, Section 3.
(a) A channel protein Channel protein Solute Carrier protein Solute
Active Transport Uses ATP to move solutes across a membrane
© 2016 Pearson Education, Inc.
Cell Physiology: Membrane Transport
Concept 7.4: Active transport uses energy to move solutes against their gradients Facilitated diffusion is still passive because the solute moves down.
5. Specific proteins facilitate passive transport of water and selected solutes: a closer look Many polar molecules and ions that are normally impeded.
3 Cells: The Living Units: Part B.
Cell Membrane Structure and Function
3 Cells: The Living Units: Part B.
Membrane Transport: Active Processes
Presentation transcript:

PowerPoint ® Lecture Slides prepared by Barbara Heard, Atlantic Cape Community College C H A P T E R © 2013 Pearson Education, Inc.© Annie Leibovitz/Contact Press Images 3 Cells: The Living Units: Part B

© 2013 Pearson Education, Inc. Membrane Transport: Active Processes Two types of active processes –Active transport –Vesicular transport Both require ATP to move solutes across a living plasma membrane because –Solute too large for channels –Solute not lipid soluble –Solute not able to move down concentration gradient

© 2013 Pearson Education, Inc. Active Transport Requires carrier proteins (solute pumps) –Bind specifically and reversibly with substance Moves solutes against concentration gradient –Requires energy

© 2013 Pearson Education, Inc. Active Transport: Two Types Primary active transport –Required energy directly from ATP hydrolysis Secondary active transport –Required energy indirectly from ionic gradients created by primary active transport

© 2013 Pearson Education, Inc. Primary Active Transport Energy from hydrolysis of ATP causes shape change in transport protein that "pumps" solutes (ions) across membrane E.g., calcium, hydrogen, Na + -K + pumps

© 2013 Pearson Education, Inc. Primary Active Transport Sodium-potassium pump –Most well-studied –Carrier (pump) called Na + -K + ATPase –Located in all plasma membranes –Involved in primary and secondary active transport of nutrients and ions

© 2013 Pearson Education, Inc. Sodium-Potassium Pump Na + and K + channels allow slow leakage down concentration gradients Na + -K + pump works as antiporter –Pumps against Na + and K + gradients to maintain high intracellular K + concentration and high extracellular Na + concentration Maintains electrochemical gradients essential for functions of muscle and nerve tissues Allows all cells to maintain fluid volume

© 2013 Pearson Education, Inc. Figure 3.10 Primary active transport is the process in which solutes are moved across cell membranes against electrochemical gradients using energy supplied directly by ATP. Slide 1 Extracellular fluid Na + Na + –K + pump K+K+ ATP-binding site Cytoplasm 1 Three cytoplasmic Na + bind to pump protein. K + released 6 Pump protein binds ATP; releases K + to the inside, and Na + sites are ready to bind Na + again. The cycle repeats. 2 Na + binding promotes hydrolysis of ATP. The energy released during this reaction phosphorylates the pump. K + bound 5 K + binding triggers release of the phosphate. The dephosphorylated pump resumes its original conformation. K+K+ 4 Two extracellular K + bind to pump. 3 Phosphorylation causes the pump to change shape, expelling Na + to the outside. Na + bound Na + released P P P PiPi

© 2013 Pearson Education, Inc. Secondary Active Transport Depends on ion gradient created by primary active transport Energy stored in ionic gradients used indirectly to drive transport of other solutes

© 2013 Pearson Education, Inc. Secondary Active Transport Cotransport—always transports more than one substance at a time –Symport system: Substances transported in same direction –Antiport system: Substances transported in opposite directions

© 2013 Pearson Education, Inc. Figure 3.11 Secondary active transport is driven by the concentration gradient created by primary active transport. Extracellular fluid Na + -glucose symport transporter loads glucose from extracellular fluid Na + -glucose symport transporter releases glucose into the cytoplasm Glucose Na + -K + pump Cytoplasm Primary active transport The ATP-driven Na + -K + pump stores energy by creating a steep concentration gradient for Na + entry into the cell. Secondary active transport As Na + diffuses back across the membrane through a membrane cotransporter protein, it drives glucose against its concentration gradient into the cell. 1 2 Slide 1

© 2013 Pearson Education, Inc. Vesicular Transport Transport of large particles, macromolecules, and fluids across membrane in membranous sacs called vesicles Requires cellular energy (e.g., ATP)

© 2013 Pearson Education, Inc. Vesicular Transport Functions: –Exocytosis—transport out of cell –Endocytosis—transport into cell Phagocytosis, pinocytosis, receptor-mediated endocytosis –Transcytosis—transport into, across, and then out of cell –Vesicular trafficking—transport from one area or organelle in cell to another

© 2013 Pearson Education, Inc. Endocytosis and Transcytosis Involve formation of protein-coated vesicles Often receptor mediated, therefore very selective Some pathogens also hijack for transport into cell Once vesicle is inside cell it may –Fuse with lysosome –Undergo transcytosis

© 2013 Pearson Education, Inc. Figure 3.12 Events of endocytosis mediated by protein-coated pits. Slide 1 Coated pit ingests substance. Coat proteins are recycled to plasma membrane. 1 Protein coat (typically clathrin) Protein-coated vesicle deta- ches. Transport vesicle Endosome Uncoated endocytic vesicle Transport vesicle containing Uncoated vesicle fuses with a sorting vesicle called an endosome. Fused vesicle may (a) fuse with lysosome for digestion of its contents, or (b) deliver its contents to the plasma membrane on the opposite side of the cell (transcytosis). Extracellular fluid Plasma membrane Cytoplasm Lysosome 2 membrane compone -nts moves to the plasma membrane for recycling

© 2013 Pearson Education, Inc. Endocytosis Phagocytosis –Pseudopods engulf solids and bring them into cell's interior –Form vesicle called phagosome Used by macrophages and some white blood cells –Move by amoeboid motion Cytoplasm flows into temporary extensions Allows creeping

© 2013 Pearson Education, Inc. Figure 3.13a Comparison of three types of endocytosis. Receptors Phagosome Phagocytosis The cell engulfs a large particle by forming projecting pseudopods ("false feet") around it and enclosing it within a membrane sac called a phagosome. The phagosome is combined with a lysosome. Undigested contents remain in the vesicle (now called a residual body) or are ejected by exocytosis. Vesicle may or may not be protein coated but has receptors capable of binding to microorganisms or solid particles.

© 2013 Pearson Education, Inc. Endocytosis Pinocytosis (fluid-phase endocytosis) –Plasma membrane infolds, bringing extracellular fluid and dissolved solutes inside cell Fuses with endosome –Most cells utilize to "sample" environment –Nutrient absorption in the small intestine –Membrane components recycled back to membrane

© 2013 Pearson Education, Inc. Figure 3.13b Comparison of three types of endocytosis. Vesicle Pinocytosis The cell "gulps" a drop of extracellular fluid containing solutes into tiny vesicles. No receptors are used, so the process is nonspecific. Most vesicles are protein-coated.

© 2013 Pearson Education, Inc. Endocytosis Receptor-mediated endocytosis –Allows specific endocytosis and transcytosis Cells use to concentrate materials in limited supply –Clathrin-coated pits provide main route for endocytosis and transcytosis Uptake of enzymes, low-density lipoproteins, iron, insulin, and, unfortunately, viruses, diphtheria, and cholera toxins

© 2013 Pearson Education, Inc. Figure 3.13c Comparison of three types of endocytosis. Vesicle Receptor-mediated endocytosis Extracellular substances bind to specific receptor proteins, enabling the cell to ingest and concentrate specific substances (ligands) in protein-coated vesicles. Ligands may simply be released inside the cell, or combined with a lysosome to digest contents. Receptors are recycled to the plasma membrane in vesicles.

© 2013 Pearson Education, Inc. Exocytosis Usually activated by cell-surface signal or change in membrane voltage Substance enclosed in secretory vesicle v-SNAREs ("v" = vesicle) on vesicle find t-SNAREs ("t" = target) on membrane and bind Functions –Hormone secretion, neurotransmitter release, mucus secretion, ejection of wastes

© 2013 Pearson Education, Inc. Figure 3.14b Exocytosis. Photomicrograph of a secretory vesicle releasing its contents by exocytosis (100,000x)

© 2013 Pearson Education, Inc. Table 3.2 Active Membrane Transport Processes (1 of 2)

© 2013 Pearson Education, Inc. Table 3.2 Active Membrane Transport Processes (2 of 2)

© 2013 Pearson Education, Inc. Active Transport Maintains Electrochemical Gradients Na + -K + pump continuously ejects 3Na + from cell and carries 2K + in Steady state maintained because rate of active transport equal to and depends on rate of Na + diffusion into cell Neuron and muscle cells "upset" RMP by opening gated Na + and K + channels

© 2013 Pearson Education, Inc. Figure 3.16 G proteins act as middlemen or relays between extracellular first messengers and intracellular second messengers that cause responses within the cell. Ligand (1st messenger) Receptor G protein Enzyme 2nd messenger Ligand* (1st messeng- er) binds to the receptor. The receptor changes shape and activates. The activated receptor binds to a G protein and acti- vates it. The G protein changes shape (turns “on”), causing it to release GDP and bind GTP (an energy source). Activated G protein activates (or inactivates) an effector protein by causing its shape to change. Effector protein (e.g., an enzyme) Extracellular fluid G protein GDP Intracellular fluid Cascade of cellular responses (The amplification effect is tremendous. Each enzyme catalyzes hundreds of reactions.) Activated kinase enzymes Active 2nd messenger Inactive 2nd messenger Activated effector enzymes catalyze reactions that produce 2nd messengers in the cell. (Common 2nd messengers include cyclic AMP and Ca 2+.) Second messengers activate other enzymes or ion channels. Cyclic AMP typically activates protein kinase enzymes. Kinase enzymes activate other enzymes. Kinase enzymes transfer phosphate groups from ATP to specific proteins and activate a series of other enzymes that trigger various metabolic and structural changes in the cell. * Ligands include hormones and neurotransmitters. Receptor Ligand Slide 1 The sequence described here is like a molecular relay race. Instead of a baton passed from runner to runner, the message (a shape change) is passed from molecule to molecule as it makes its way across the cell membrane from outside to inside the cell.