1/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 MARE Microcalorimenter.

Slides:



Advertisements
Similar presentations
Program Degrad.1.0 Auger cascade model for electron thermalisation in gas mixtures produced by photons or particles in electric and magnetic fields S.F.Biagi.
Advertisements

December 10, 2008 TJRParticle Refrigerator1 The Particle Refrigerator Tom Roberts Muons, Inc. A promising approach to using frictional cooling for reducing.
Recent progress with TES microcalorimeters and signal multiplexing J. Ullom NIST NASA GSFC SRON J. Beall R. Doriese W. Duncan L. Ferreira G. Hilton R.
SUMMARY – SESSION NU-3 ABSOLUTE NEUTRINO MASS SNOWMASS 2013, MINNEAPOLIS AUG 2, 2013 Hamish Robertson, University of Washington Convenors: Ben Monreal,
05/03/2004 Measurement of Bunch Length Using Spectral Analysis of Incoherent Fluctuations Vadim Sajaev Advanced Photon Source Argonne National Laboratory.
April-June )Oscillations: 2)Kinematics in weak decays: 3) 0 double beta decay: ?
Neutrino Mass and Mixing David Sinclair Carleton University PIC2004.
Introduction to Hadronic Final State Reconstruction in Collider Experiments Introduction to Hadronic Final State Reconstruction in Collider Experiments.
Bingxin Yang High resolution effective K September 22-23, 2004 High-Resolution Effective K Measurements Using Spontaneous.
X-Ray Spectroscopy. 1 eV 100 eV 10 eV Energy (keV) The need for high resolution X-ray spectroscopy Astrophysical Plasmas: Simulation of the emission from.
Daniel Lenz, University of Wisconsin, Madison 11/05/ APS DNP Cryogenic search for neutrinoless double beta decay Daniel Lenz on behalf of the CUORE.
Peter Fauland (for the LHCb collaboration) The sensitivity for the B S - mixing phase  S at LHCb.
Daniele Pergolesi, Institut d’Astrophysique de Paris, Nov 14 th The MARE experiment on direct measurement of neutrino mass Daniele Pergolesi UNIVERSITY.
CUORICINO and CUORE Chiara Brofferio Università di Milano – Bicocca and INFN, Sez. di Milano NOW 2004 – Otranto 12 – 17 September 2004 On behalf of the.
1/25 Current results and future scenarios for gravitational wave’s stochastic background G. Cella – INFN sez. Pisa.
Measurement of through-going particle momentum by means of Multiple Scattering with the T600 TPC Talk given by Antonio Jesús Melgarejo (Universidad de.
Prospects for the detection of sterile neutrinos with KATRIN-like experiments Anna Sejersen Riis, Steen Hannestad “Detecting sterile neutrinos with KATRIN.
Part 1: Basic Principle of Measurements
From Cuoricino to CUORE: towards the inverted hierarchy region Andrea Giuliani On behalf of the CUORE collaboration University of Insubria (Como) and INFN.
SuperNEMO Simulations Darren Price University of Manchester July, 2005.
KATRIN - Karlsruhe Tritium Neutrino Experiment - measuring sub-eV neutrino masses G. Drexlin, FZ Karlsruhe for the KATRIN Collaboration International Europhysics.
25/07/2002G.Unal, ICHEP02 Amsterdam1 Final measurement of  ’/  by NA48 Direct CP violation in neutral kaon decays History of the  ’/  measurement by.
Irakli Chakaberia Final Examination April 28, 2014.
MANU2: status report Maria Ribeiro Gomes* for the Genoa Group IAP, 14-Nov-05 * pos-doc under TRN HPRN-CT
DDEP 2012 | C. Bisch – Study of beta shape spectra 1 Study of the shape of  spectra Development of a Si spectrometer for measurement of  spectra 
ENHANCED DIRECT PHOTON PRODUCTION IN 200 GEV AU+AU IN PHENIX Stefan Bathe for PHENIX, WWND 2009.
Walid DRIDI, CEA/Saclay n_TOF Collaboration Meeting, Paris December 4-5, 2006 DAPNIA Neutron capture cross section of 234 U Walid DRIDI CEA/Saclay for.
Ivan Smiljanić Vinča Institute of Nuclear Sciences, Belgrade, Serbia Energy resolution and scale requirements for luminosity measurement.
Status of Surface Sensitive Bolometers University of Insubria – Como, Italy INFN – Milano, Italy Prague, Chiara Salvioni.
Paris - 14/11/20051 MIBETA 2 Semiconductor microbolometers MIBETA 2 Semiconductor microbolometers for a direct neutrino mass search Alessandro.
F. GattiTAUP2007, Sendai, MARE an experiment for the calorimetric search of m  with sub eV sensitivity F.Gatti On the behalf of the Collaboration.
DEVELOPMENT OF BETA SPECTROMETRY USING CRYOGENIC DETECTORS M. Loidl, C. Le-Bret, M. Rodrigues, X. Mougeot CEA Saclay – LIST / LNE, Laboratoire National.
Simulated Annealing G.Anuradha.
M. Wójcik for the GERDA Collaboration Institute of Physics, Jagellonian University Epiphany 2006, Kraków, Poland, 6-7 January 2006.
Neutrinoless double-beta decay and the SuperNEMO project. Darren Price University of Manchester 24 November, 2004.
Min Kyu Lee ( 이민규 ) Kyoung Beom Lee ( 이경범 ) Yong-Hamb Kim ( 김용함 ) Low Temperature Detectors 2006 Workshop on the Underground Experiment at Yangyang TEXONO-KIMS.
Measurement of Vus. Recent NA48 results on semileptonic and rare Kaon decays Leandar Litov, CERN On behalf of the NA48 Collaboration.
Experimental methods for direct measurements of the Neutrino Mass Part - 1 Como – 30/05/2006.
I. Giomataris NOSTOS a new low energy neutrino experiment Detect low energy neutrinos from a tritium source using a spherical gaseous TPC Study neutrino.
M. Wójcik Instytut Fizyki, Uniwersytet Jagielloński Instytut Fizyki Doświadczalnej, Uniwersytet Warszawski Warszawa, 10 Marca 2006.
Nucleosynthesis in AGB Stars: the Role of the 18 O(p,  ) 15 N Reaction Marco La Cognata.
Jyly 8, 2009, 3rd open meeting of Belle II collaboration, KEK1 Charles University Prague Zdeněk Doležal for the DEPFET beam test group 3rd Open Meeting.
19 March 2009Thomas Mueller - Workshop AAP09 1 Spectral modeling of reactor antineutrino Thomas Mueller – CEA Saclay Irfu/SPhN.
Metallic Magnetic Calorimeters for High-Resolution X-ray Spectroscopy D. Hengstler, C. Pies, S. Schäfer, S. Kempf, M. Krantz, L. Gamer, J. Geist, A. Pabinger,
00 Cooler CSB Direct or Extra Photons in d+d  0 Andrew Bacher for the CSB Cooler Collaboration ECT Trento, June 2005.
Preliminary Measurement of the Ke3 Form Factor f + (t) M. Antonelli, M. Dreucci, C. Gatti Introduction: Form Factor Parametrization Fitting Function and.
1 MARE: Status and Perspectives Flavio Gatti University and INFN of Genoa on behalf of the MARE Collaboration NUMASS2010 INT Seattle, Feb. 9, 2010.
1 Performance and Physics with the CsI(Tl) Array at the Kuo-Sheng Reactor Neutrino Laboratory  Physics with CsI(Tl) detector  Period -2 configuration.
1st Year Talk1 PEP Violation Analysis with NEMO3 and Calorimeter R&D for SuperNEMO Anastasia Freshville.
Stochastic Background Data Analysis Giancarlo Cella I.N.F.N. Pisa first ENTApP - GWA joint meeting Paris, January 23rd and 24th, 2006 Institute d'Astrophysique.
 0 life time analysis updates, preliminary results from Primex experiment 08/13/2007 I.Larin, Hall-B meeting.
Jeroen van Hunen (for the LHCb collaboration) The sensitivity to  s and  Γ s at LHCb.
MARE Microcalorimeter Arrays for a Rhenium Experiment A DETECTOR OVERVIEW Andrea Giuliani, University of Insubria, Como, and INFN Milano on behalf of the.
1 MARE Direct determination of neutrino mass with Low Temperature Microcalorimeters Flavio Gatti University and INFN of Genoa CSNII, 29 Sept 2009.
Introduction to Hadronic Final State Reconstruction in Collider Experiments Introduction to Hadronic Final State Reconstruction in Collider Experiments.
Scintillating Bolometers – Rejection of background due to standard two-neutrino double beta decay D.M. Chernyak 1,2, F.A. Danevich 2, A. Giuliani 1, M.
Search for Neutrinoless Double Beta Decay with NEMO-3 Zornitza Daraktchieva University College London On behalf of the NEMO3 collaboration PANIC08, Eilat,
Neutrino physics: The future Gabriela Barenboim TAU04.
Neutrinoless double beta decay (0  ) CdTe Semico nductor Band gap (eV) Electron mobility (cm 2 /V/s) Hole mobility (cm 2 /V/s) Density (g/cm 3.
Yong-Hamb Kim Development of cryogenic CaMoO 4 detector 2nd International Workshop on double beta decay search Oct. 7~ Oct. 8, 2010.
ICHEP 2002, Amsterdam Marta Calvi - Study of Spectral Moments… 1 Study of Spectral Moments in Semileptonic b Decays with the DELPHI Detector at LEP Marta.
Current status of R&D on MMC and TES and a full size crystal test setup Sang-jun Lee Seoul National University.
How precisely do we know the antineutrino source spectrum from a nuclear reactor? Klaus Schreckenbach (TU München) Klaus Schreckenbach.
Direct Measurements Working Group
Quarkonium production in ALICE
Review: Probing Low Energy Neutrino Backgrounds with Neutrino Capture on Beta Decaying Nuclei Cocco A, Magnano G and Messina M 2007 J. Cosmol. Astropart.
MARE Microcalorimeter Arrays for a Rhenium Experiment
Study of e+e- pp process using initial state radiation with BaBar
MARE (microcalorimeter array for a rhenium experiment)
Presentation transcript:

1/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 MARE Microcalorimenter Arrays for a Rhenium Experiment Proposal of a next generation neutrino mass experiment based on calorimetric study of the 187 Re beta spectrum Samuele Sangiorgio on behalf of the MARE collaboration University of Insubria Como - Italy INFN Milano - Italy

2/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/ eV 0.5 eV 2.2 eV 0.1 eV 0.05 eV 0.2 eV Present sensitivity Future sensitivity (a few year scale) Cosmology (CMB + LSS) Neutrinoless Double Beta Decay Single Beta Decay Tools Model dependent Direct determination Tools for the investigation of the mass scale

3/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 Complementarity of cosmology, single and double β decay Cosmology, single and double  decay measure different combinations of the neutrino mass eigenvalues, constraining the neutrino mass scale In a standard three active neutrino scenario:  Mi Mi i=1 3  cosmology simple sum pure kinematical effect  M i 2 |U ei | 2 i=1 3 1/2  M    beta decay incoherent sum real neutrino  M i |U ei | 2 e i   i i=1 3  M    double beta decay coherent sum virtual neutrino Majorana phases

4/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 Neutrinoless Double Beta Decay  it works only if neutrino is a Majorana particle (  c )  uncertainties from nuclear physics  other mechanisms (not only massive neutrinos) can mediate the process necessity of direct measurement and cross checks at this scale Cosmology (Cosmic Microwave Background + Large Scale Structure) very sensitive, but considerable spread in recently published results  parameter degeneracy  dependence on priors cosmological parameters  sensitivity to even small changes of input data Model dependent tools

5/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 finite neutrino mass only a small spectral region very close to Q is affected electron kinetic energy distribution (A,Z)  (A,Z+1) + e - + e Q = M at (A,Z) – M at (A,Z+1)  E e + E Single Beta Decay processes involving neutrinos in the final state E 2 = M 2 c 4 + p 2 c 2 basic idea: use only kinematics Model independent tool: the kinematics of β decay phase space term coulombian correction term form factor contains NME radiative electromagnetic correction

6/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 The count fraction laying in this range is  (M  Q) 3 low Q are preferred The modified part of the beta spectrum is over range of the order of [Q – M c 2, Q] E – Q [eV] Tritium as an example Effects of a finite neutrino mass on the β decay

7/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 Effects of a finite neutrino mass on the Kurie plot The Kurie plot K(E e ) is a convenient linearization of the beta spectrum Q Q–M c 2 Q K(E) zero neutrino massfinite neutrino masseffect of:  background  energy resolution  excited final states  Q-  E Q (dN/dE) dE  2(  E/Q) 3 fraction of decays below endpoint

8/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 Experimental searches based on nuclear beta decay Requests :  high energy resolution  a tiny spectral distortion must be observed  high statistics in a very narrow region of the beta spectrum  well known response of the detector  control of any systematic effect that could distort the spectral shape Approximate approach to evaluate sensitivity to neutrino mass  M  Require that the deficit of counts close to the end point due to neutrino mass be equal to the Poissonian fluctuation of number of counts in the massless spectrum  M  1.6 Q 3  E A T M  4 energy resolution total source activity live time

9/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 Two complementary experimental approaches  determine all the “visible” energy of the decay with a high resolution low energy “nuclear” detector  cryogenic microcalorimeters  present achieved sensitivity:  15 eV  future planned sensitivity: see later  measurement of the neutrino energy source  detector ( calorimetric approach ) (the source is 187 Re - Q=2.5 keV)   determine electron energy by means of a selection on the beta electrons operated by proper electric and magnetic fields  measurement of the electron energy out of the source  present achieved sensitivity:  2 eV  future planned sensitivity:  0.2 eV  magnetic and electrostatic spectrometers source separate from detector (the source is T - Q=18.6 keV)  completely different systematic uncertainties

10/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 The calorimetric approach to the measurement of the mass 187 Re  187 Os + e - + e 5/2 +  1/2 – unique first forbidden (computable S(E e )) Advantages of calorimetry  no backscattering  no energy loss in the source  no excited final state problem  no solid state excitation Drawbacks of calorimetry  systematic induced by pile-up effects  energy dependent background Calorimeters measure the entire spectrum at once  use low Q beta decaying isotopes to achieve enough statistic close to Q  best choice: 187 Re – Q = 2.47 keV but T 1/2 = 43.2 Gy vs. 3x for T beta spectrum event frac. in the last 10 eV: 1.3x10 -7

11/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 Bolometric detectors of particles: basic concepts Energy absorber crystal containing Re M ~ 0.25 mg basic parameter: C Thermal coupling read-out wires in the future,  machined legs basic parameter: G G  0.02 pW / mK  Temperature signal:  T = E/C  1 mK for E = 2.5 keV  Bias: I  0.5 nA  Joule power  0.4 pW  Temperature rise  20 mK  Voltage signal:  V = I  dR/dT   T   V  30  V for E = 2.5 keV  Noise over signal bandwidth (  1 kHz): V rms = 0.2  V  Signal recovery time:  = C/G  20 ms Advantages over conventional techniques:  high energy resolution  wide choice for absorber material Thermometer Si-implanted thermistor basic parameters: R  1.5 M   100 mK dR/dT  50 k  mK Variable Range Hopping conduction regime exponential increase of R with decreasing T Heat sink T ~ 80 mK dilution refrigerator MicroBolometer:

12/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 Calorimetric tecniques: status MIBETA Milano/Como (AgReO4)  M β  < 15.6 eV (90% C.L.) MANU Genova (Metallic Re)  M β  < 26 eV (95% C.L.) Presently, two groups are dealing with Rhenium single beta decay measurements by means of microbolometers:

13/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 MIBETA (Milano/Como) experiment: the detectors Energy absorbers  AgReO 4 single crystals  187 Re activity  0.54 Hz/mg  M  0.25 mg  A  0.13 mHz Thermistors  Si-implanted thermistors  high sensitivity  many parameters to play with  high reproducibility  array  possibility of  -machining typically, array of 10 detectors lower pile up & higher statistics ~ 1 mm single detector

14/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 MIBETA experiment: the Kurie - plot E (keV) K(E) total Kurie – plot 5 x Re decays above 700 eV indipendent from fit interval » good fit func from statistical distribution of time interval between two consecutive events

15/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 MIBETA experiment: the neutrino mass  M   2 = -141  211 stat  90 sys eV 2 (preliminary)  M     15.6 eV (90% c.l.) Fit parameters single gaussian:  E FWHM = 27.8 eV fitting interval: 0.8 – 3.5 keV free constant background: 6 x c/keV/h free pile-up fraction: 1.7 x 10 -4

16/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 spectrum detector scheme Similar technique as MIBETA  One detector only  Metallic Rhenium (1.5 mg)   E FWHM = 96 eV  Q = 2470  1  4 eV   ½ = 41.2  0.02  0.11 Gy  M   < 26 eV (95 % c.l.) MANU experiment (Genova)

17/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 The Future still open! To reach a sub-eV sensitivity on mass (like Katrin) we have to improve our sensitivity by two orders of magnitude too challenging task for a single step! two stages effort

18/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 simulations I phase GOAL:  reach 2 eV sensitivity  improve understanding on systematics  R&D for phase II Time Schedule: MARE - phase I Present technology detectors Single channel optimization Scaling up to hundreds devices Theoretical spectral shape of decay Solid state BEFS effect Detector response function Unidentified pile-up Data reduction …

19/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 MARE - phase I MIBETA 2 MANU 2 Transition Edge Sensor (TES) instead of NTD thermistors » faster risetime and better S/N ITC-irst micromachined array. Implanted silicon with the technology developed for the MIBETA single devices. Status: ongoing production & tests NASA 6x6 silicon array. Status: encouraging first results. Coupling and electronics to be optimized. LBL+Bonn NTD Ge array. Status: excess noise observed; reproducibility to be demostrated.

20/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 MARE – phase II the full MARE phase I dataset is required to drawn a definitive conclusion. The kick-off of the phase II will be subordinated to: safe reduction of all the known sources of systematic uncertainties; verification that no new sources come up to impair the sensitivity; understanding of the 187 Re decay spectrum with the required precision; demonstration that the estimated sensitivity can be maintained though the experiment is segmented in a large number of channels GOAL:  reach 0.2 eV sensitivity Time Schedule: Need substancial improvements :  sensors: TES or MMC  electronics: multiplexed SQUID  methods: modularity technology already under study in several other experiments

21/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 MARE – phase II simulations II phase  E(eV),  R (  s), A(Hz) channels in 5 y Approach: design a kind of modular pixel array kit which can be relatively easily installed in any available refrigerator

22/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 Conclusions and summary DRAFT PROPOSAL  Importance of another β decay experiment complementary to KATRIN  Calorimetric approach looks very promising  Joining together the know-how and technology of the involved groups MARE phase I could be implemented with a relatively straightforward optimization and scaling of the current MIBETA and MANU detectors  MARE phase II is challenging but there’s no real technological limit » large margin of improvements exists né dolcezza di figlio, né la pieta del vecchio padre, né 'l debito amore lo qual dovea Penelopè far lieta, vincer potero dentro a me l'ardore ch'i' ebbi a divenir del mondo esperto e de li vizi umani e del valore; ma misi me per l'alto MARE aperto [Dante, Inferno, XXVI]

23/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005

24/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 Mass hierarchy In case of mass hierarchy:  the Kurie plot  superposition of three different sub - Kurie plots  each sub - Kurie plot corresponds to one of the three different mass eigenvalues The weight of each sub – Kurie plot will be given by |U ej | 2, where | e  =  U ei | Mi  i=1 3 Q – M 3 Q – M 2 Q – M 1 Q E e K(E e ) This detailed structure will not be resolved with present and planned experimental sensitivities (~ 0.2 eV) K(E e ) EeEe

25/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 Mass degeneracy Q – M  K(E e ) Q E e If the 3 mass components cannot be resolved or degeneracy holds: the Kurie-plot can be described in terms of a single mass parameter, a mean value of the three mass eigenstates M=M=  M i 2 |U ei | 2 1/2