1/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 MARE Microcalorimenter Arrays for a Rhenium Experiment Proposal of a next generation neutrino mass experiment based on calorimetric study of the 187 Re beta spectrum Samuele Sangiorgio on behalf of the MARE collaboration University of Insubria Como - Italy INFN Milano - Italy
2/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/ eV 0.5 eV 2.2 eV 0.1 eV 0.05 eV 0.2 eV Present sensitivity Future sensitivity (a few year scale) Cosmology (CMB + LSS) Neutrinoless Double Beta Decay Single Beta Decay Tools Model dependent Direct determination Tools for the investigation of the mass scale
3/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 Complementarity of cosmology, single and double β decay Cosmology, single and double decay measure different combinations of the neutrino mass eigenvalues, constraining the neutrino mass scale In a standard three active neutrino scenario: Mi Mi i=1 3 cosmology simple sum pure kinematical effect M i 2 |U ei | 2 i=1 3 1/2 M beta decay incoherent sum real neutrino M i |U ei | 2 e i i i=1 3 M double beta decay coherent sum virtual neutrino Majorana phases
4/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 Neutrinoless Double Beta Decay it works only if neutrino is a Majorana particle ( c ) uncertainties from nuclear physics other mechanisms (not only massive neutrinos) can mediate the process necessity of direct measurement and cross checks at this scale Cosmology (Cosmic Microwave Background + Large Scale Structure) very sensitive, but considerable spread in recently published results parameter degeneracy dependence on priors cosmological parameters sensitivity to even small changes of input data Model dependent tools
5/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 finite neutrino mass only a small spectral region very close to Q is affected electron kinetic energy distribution (A,Z) (A,Z+1) + e - + e Q = M at (A,Z) – M at (A,Z+1) E e + E Single Beta Decay processes involving neutrinos in the final state E 2 = M 2 c 4 + p 2 c 2 basic idea: use only kinematics Model independent tool: the kinematics of β decay phase space term coulombian correction term form factor contains NME radiative electromagnetic correction
6/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 The count fraction laying in this range is (M Q) 3 low Q are preferred The modified part of the beta spectrum is over range of the order of [Q – M c 2, Q] E – Q [eV] Tritium as an example Effects of a finite neutrino mass on the β decay
7/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 Effects of a finite neutrino mass on the Kurie plot The Kurie plot K(E e ) is a convenient linearization of the beta spectrum Q Q–M c 2 Q K(E) zero neutrino massfinite neutrino masseffect of: background energy resolution excited final states Q- E Q (dN/dE) dE 2( E/Q) 3 fraction of decays below endpoint
8/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 Experimental searches based on nuclear beta decay Requests : high energy resolution a tiny spectral distortion must be observed high statistics in a very narrow region of the beta spectrum well known response of the detector control of any systematic effect that could distort the spectral shape Approximate approach to evaluate sensitivity to neutrino mass M Require that the deficit of counts close to the end point due to neutrino mass be equal to the Poissonian fluctuation of number of counts in the massless spectrum M 1.6 Q 3 E A T M 4 energy resolution total source activity live time
9/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 Two complementary experimental approaches determine all the “visible” energy of the decay with a high resolution low energy “nuclear” detector cryogenic microcalorimeters present achieved sensitivity: 15 eV future planned sensitivity: see later measurement of the neutrino energy source detector ( calorimetric approach ) (the source is 187 Re - Q=2.5 keV) determine electron energy by means of a selection on the beta electrons operated by proper electric and magnetic fields measurement of the electron energy out of the source present achieved sensitivity: 2 eV future planned sensitivity: 0.2 eV magnetic and electrostatic spectrometers source separate from detector (the source is T - Q=18.6 keV) completely different systematic uncertainties
10/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 The calorimetric approach to the measurement of the mass 187 Re 187 Os + e - + e 5/2 + 1/2 – unique first forbidden (computable S(E e )) Advantages of calorimetry no backscattering no energy loss in the source no excited final state problem no solid state excitation Drawbacks of calorimetry systematic induced by pile-up effects energy dependent background Calorimeters measure the entire spectrum at once use low Q beta decaying isotopes to achieve enough statistic close to Q best choice: 187 Re – Q = 2.47 keV but T 1/2 = 43.2 Gy vs. 3x for T beta spectrum event frac. in the last 10 eV: 1.3x10 -7
11/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 Bolometric detectors of particles: basic concepts Energy absorber crystal containing Re M ~ 0.25 mg basic parameter: C Thermal coupling read-out wires in the future, machined legs basic parameter: G G 0.02 pW / mK Temperature signal: T = E/C 1 mK for E = 2.5 keV Bias: I 0.5 nA Joule power 0.4 pW Temperature rise 20 mK Voltage signal: V = I dR/dT T V 30 V for E = 2.5 keV Noise over signal bandwidth ( 1 kHz): V rms = 0.2 V Signal recovery time: = C/G 20 ms Advantages over conventional techniques: high energy resolution wide choice for absorber material Thermometer Si-implanted thermistor basic parameters: R 1.5 M 100 mK dR/dT 50 k mK Variable Range Hopping conduction regime exponential increase of R with decreasing T Heat sink T ~ 80 mK dilution refrigerator MicroBolometer:
12/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 Calorimetric tecniques: status MIBETA Milano/Como (AgReO4) M β < 15.6 eV (90% C.L.) MANU Genova (Metallic Re) M β < 26 eV (95% C.L.) Presently, two groups are dealing with Rhenium single beta decay measurements by means of microbolometers:
13/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 MIBETA (Milano/Como) experiment: the detectors Energy absorbers AgReO 4 single crystals 187 Re activity 0.54 Hz/mg M 0.25 mg A 0.13 mHz Thermistors Si-implanted thermistors high sensitivity many parameters to play with high reproducibility array possibility of -machining typically, array of 10 detectors lower pile up & higher statistics ~ 1 mm single detector
14/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 MIBETA experiment: the Kurie - plot E (keV) K(E) total Kurie – plot 5 x Re decays above 700 eV indipendent from fit interval » good fit func from statistical distribution of time interval between two consecutive events
15/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 MIBETA experiment: the neutrino mass M 2 = -141 211 stat 90 sys eV 2 (preliminary) M 15.6 eV (90% c.l.) Fit parameters single gaussian: E FWHM = 27.8 eV fitting interval: 0.8 – 3.5 keV free constant background: 6 x c/keV/h free pile-up fraction: 1.7 x 10 -4
16/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 spectrum detector scheme Similar technique as MIBETA One detector only Metallic Rhenium (1.5 mg) E FWHM = 96 eV Q = 2470 1 4 eV ½ = 41.2 0.02 0.11 Gy M < 26 eV (95 % c.l.) MANU experiment (Genova)
17/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 The Future still open! To reach a sub-eV sensitivity on mass (like Katrin) we have to improve our sensitivity by two orders of magnitude too challenging task for a single step! two stages effort
18/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 simulations I phase GOAL: reach 2 eV sensitivity improve understanding on systematics R&D for phase II Time Schedule: MARE - phase I Present technology detectors Single channel optimization Scaling up to hundreds devices Theoretical spectral shape of decay Solid state BEFS effect Detector response function Unidentified pile-up Data reduction …
19/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 MARE - phase I MIBETA 2 MANU 2 Transition Edge Sensor (TES) instead of NTD thermistors » faster risetime and better S/N ITC-irst micromachined array. Implanted silicon with the technology developed for the MIBETA single devices. Status: ongoing production & tests NASA 6x6 silicon array. Status: encouraging first results. Coupling and electronics to be optimized. LBL+Bonn NTD Ge array. Status: excess noise observed; reproducibility to be demostrated.
20/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 MARE – phase II the full MARE phase I dataset is required to drawn a definitive conclusion. The kick-off of the phase II will be subordinated to: safe reduction of all the known sources of systematic uncertainties; verification that no new sources come up to impair the sensitivity; understanding of the 187 Re decay spectrum with the required precision; demonstration that the estimated sensitivity can be maintained though the experiment is segmented in a large number of channels GOAL: reach 0.2 eV sensitivity Time Schedule: Need substancial improvements : sensors: TES or MMC electronics: multiplexed SQUID methods: modularity technology already under study in several other experiments
21/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 MARE – phase II simulations II phase E(eV), R ( s), A(Hz) channels in 5 y Approach: design a kind of modular pixel array kit which can be relatively easily installed in any available refrigerator
22/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 Conclusions and summary DRAFT PROPOSAL Importance of another β decay experiment complementary to KATRIN Calorimetric approach looks very promising Joining together the know-how and technology of the involved groups MARE phase I could be implemented with a relatively straightforward optimization and scaling of the current MIBETA and MANU detectors MARE phase II is challenging but there’s no real technological limit » large margin of improvements exists né dolcezza di figlio, né la pieta del vecchio padre, né 'l debito amore lo qual dovea Penelopè far lieta, vincer potero dentro a me l'ardore ch'i' ebbi a divenir del mondo esperto e de li vizi umani e del valore; ma misi me per l'alto MARE aperto [Dante, Inferno, XXVI]
23/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005
24/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 Mass hierarchy In case of mass hierarchy: the Kurie plot superposition of three different sub - Kurie plots each sub - Kurie plot corresponds to one of the three different mass eigenvalues The weight of each sub – Kurie plot will be given by |U ej | 2, where | e = U ei | Mi i=1 3 Q – M 3 Q – M 2 Q – M 1 Q E e K(E e ) This detailed structure will not be resolved with present and planned experimental sensitivities (~ 0.2 eV) K(E e ) EeEe
25/22 Samuele Sangiorgio, Universita’ dell’Insubria, Como – INFN MilanoInternational School of Nuclear Physics – ERICE – 23/09/2005 Mass degeneracy Q – M K(E e ) Q E e If the 3 mass components cannot be resolved or degeneracy holds: the Kurie-plot can be described in terms of a single mass parameter, a mean value of the three mass eigenstates M=M= M i 2 |U ei | 2 1/2