Strong tensor correlation in light nuclei with tensor-optimized antisymmetrized molecular dynamics (TOAMD) International symposium on “High-resolution.

Slides:



Advertisements
Similar presentations
Structure of  hypernuclei with the antisymmetrized molecular dynamics method Masahiro Isaka (RIKEN)
Advertisements

Ab Initio Calculations of Three and Four Body Dynamics M. Tomaselli a,b Th. Kühl a, D. Ursescu a a Gesellschaft für Schwerionenforschung, D Darmstadt,Germany.
反対称化分子動力学でテンソル力を取り扱う試 み -更に前進するには?- A. Dote (KEK), Y. Kanada-En ’ yo ( KEK ), H. Horiuchi (Kyoto univ.), Y. Akaishi (KEK), K. Ikeda (RIKEN) 1.Introduction.
HL-3 May 2006Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-3) Structure of nuclei NN potential exchange force Terra incognita in nuclear.
Delta-hole effects on the shell evolution of neutron-rich exotic nuclei Takaharu Otsuka University of Tokyo / RIKEN / MSU Chiral07 Osaka November 12 -
Testing shell model on nuclei
The University of Tokyo
Numerical Studies of Universality in Few-Boson Systems Javier von Stecher Department of Physics and JILA University of Colorado Probable configurations.
Coupled-Channel analyses of three-body and four-body breakup reactions Takuma Matsumoto (RIKEN Nishina Center) T. Egami 1, K. Ogata 1, Y. Iseri 2, M. Yahiro.
横田 朗A 、 肥山 詠美子B 、 岡 眞A 東工大理工A、理研仁科セB
Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)
11 Role of tensor force in light nuclei based on the tensor optimized shell model Hiroshi TOKI RCNP, Osaka Univ. Manuel Valverde RCNP, Osaka Univ. Atsushi.
Role of tensor force in He and Li isotopes with tensor optimized shell model Hiroshi TOKI RCNP, Osaka Univ. Kiyomi IKEDA RIKEN Atsushi UMEYA RIKEN Takayuki.
1 軽い核におけるテンソル相関と 短距離相関の役割 核子と中間子の多体問題の統一的描像に向けて@ RCNP Tensor correlation for He and Li isotopes in Tensor-Optimized Shell Model (TOSM)
XII Nuclear Physics Workshop Maria and Pierre Curie: Nuclear Structure Physics and Low-Energy Reactions, Sept , Kazimierz Dolny, Poland Self-Consistent.
LBL 5/21/2007J.W. Holt1 Medium-modified NN interactions Jeremy W. Holt* Nuclear Theory Group State University of New York * with G.E. Brown, J.D. Holt,
クラスター・シェル競合の新展開 板垣 直之 ( 京都大学基礎物理学研究所 ). Shell structure; single-particle motion of protons and neutrons decay threshold to clusters Excitation energy.
Takuma Matsumoto (Kyushu Univ.) K. Minomo, K. Ogata a, M. Yahiro, and K. Kato b (Kyushu Univ, a RCNP, b Hokkaido Univ) Description for Breakup Reactions.
Cluster-shell Competition in Light Nuclei N. Itagaki, University of Tokyo S. Aoyama, Kitami Institute of Technology K. Ikeda, RIKEN S. Okabe, Hokkaido.
Study of light kaonic nuclei with a Chiral SU(3)-based KN potential A. Dote (KEK) W. Weise (TU Munich)  Introduction  ppK - studied with a simple model.
Coupling of (deformed) core and weakly bound neutron M. Kimura (Hokkaido Univ.)
M. Matsuo, PRC73(’06) Matter Calc. Two-particle density.
We construct a relativistic framework which takes into pionic correlations(2p-2h) account seriously from both interests: 1. The role of pions on nuclei.
Hiroshi MASUI Kitami Institute of Technology RCNP 研究会 「 核子・ハイペロン多体系におけるクラスター現象 」, KGU 関内, Sep. 2013, 横浜 Collaborators:K. KatoHokkaido Univ. K. IkedaRIKEN.
Hiroshi MASUI Kitami Institute of Technology Collaborators:K. KatoHokkaido Univ. K. IkedaRIKEN Aug. 2011, APFB2011, Sungkyunkwan Univ., Seoul, Korea.
Auxiliary Field Diffusion Monte Carlo study of symmetric nuclear matter S. Gandolfi Dipartimento di Fisica and INFN, Università di Trento I Povo,
Erosion of N=28 Shell Gap and Triple Shape Coexistence in the vicinity of 44 S M. KIMURA (HOKKAIDO UNIV.) Y. TANIGUCHI (RIKEN), Y. KANADA-EN’YO(KYOTO UNIV.)
Application of correlated basis to a description of continuum states 19 th International IUPAP Conference on Few- Body Problems in Physics University of.
N. Itagaki Yukawa Institute for Theoretical Physics, Kyoto University.
Cluster aspect of light unstable nuclei
Deformations of sd and pf shell  hypernuclei with antisymmetrized molecular dynamics Masahiro Isaka (RIKEN)
Studies of hypernuclei with the AMD method Masahiro ISAKA Institute of Physical and Chemical Research (RIKEN) Focusing on 25  Mg, based on M. Isaka, M.
Extended Brueckner-Hartree-Fock theory in many body system - Importance of pion in nuclei - Hiroshi Toki (RCNP, KEK) In collaboration.
Three-body force effect on the properties of asymmetric nuclear matter Wei Zuo Institute of Modern Physics, Lanzhou, China.
Furong Xu (许甫荣) Many-body calculations with realistic and phenomenological nuclear forces Outline I. Nuclear forces II. N 3 LO (LQCD): MBPT, BHF, GSM (resonance.
Nicolas Michel CEA / IRFU / SPhN / ESNT April 26-29, 2011 Isospin mixing and the continuum coupling in weakly bound nuclei Nicolas Michel (University of.
Furong Xu (许甫荣) Nuclear forces and applications to nuclear structure calculations Outline I. Nuclear forces II. N 3 LO (LQCD): MBPT, BHF, GSM (resonance.
11 明 孝之 大阪工業大学 阪大 RCNP Tensor optimized shell model using bare interaction for light nuclei 共同研究者 土岐 博 阪大 RCNP 池田 清美 理研 RCNP
Adiabatic hyperspherical study of triatomic helium systems
Possible molecular bound state of two charmed baryons - hadronic molecular state of two Λ c s - Wakafumi Meguro, Yan-Rui Liu, Makoto Oka (Tokyo Institute.
Tensor Optimized Few-body Model for s-shell nuclei Kaori Horii, Hiroshi Toki (RCNP, Osaka univ.) Takayuki Myo, (Osaka Institute of Technology) Kiyomi Ikeda.
APS April Meeting 2002 The Dynamics of Three Body Forces in Three Nucleon Bound State Hang Liu Charlotte Elster Walter Glöckle.
Cluster-Orbital Shell Model for neutron-lich nuclei Hiroshi MASUI Kitami Institute of Technology Collaborators: Kiyoshi KATO, Hokkaido Univ. Kiyomi IKEDA,
11 Tensor optimized shell model with bare interaction for light nuclei In collaboration with Hiroshi TOKI RCNP, Osaka Univ. Kiyomi IKEDA RIKEN 19th International.
Satoru Sugimoto Kyoto University 1. Introduction 2. Charge- and parity-projected Hartree-Fock method (a mean field type model) and its application to sub-closed.
Furong Xu (许甫荣) Many-body correlations in ab-initio methods Outline I. Nuclear forces, Renormalizations (induced correlations) II. N 3 LO (LQCD) MBPT,
Few-body approach for structure of light kaonic nuclei Shota Ohnishi (Hokkaido Univ.) In collaboration with Tsubasa Hoshino (Hokkaido Univ.) Wataru Horiuchi.
Systematic analysis on cluster components in He-isotopes by using a new AMD approach Niigata University Shigeyoshi Aoyama FB18, August 24 (2006) S. Aoyama,
Few-Body Models of Light Nuclei The 8th APCTP-BLTP JINR Joint Workshop June 29 – July 4, 2014, Jeju, Korea S. N. Ershov.
HIRG 重离子反应组 Heavy Ion Reaction Group GDR as a Probe of Alpha Cluster in Light Nuclei Wan-Bing He ( 何万兵 ) SINAP-CUSTIPEN Collaborators : Yu-Gang.
理論から見たテンソル力 Hiroshi Toki (RCNP, Osaka University) In collaboration with T. Myo (Osaka IT) Y. Ogawa (RCNP) K. Horii (RCNP) K. Ikeda.
Tensor interaction in Extended Brueckner-Hartree-Fock theory Hiroshi Toki (RCNP, Osaka) In collaboration with Yoko Ogawa.
Description of nuclear structures in light nuclei with Brueckner-AMD
Masahiro Isaka (RIKEN)
Tensor optimized shell model and role of pion in finite nuclei
Experimental Tests of Charge Symmetry Breaking in Hypernuclei
JLab6: Cluster structure connects to high-momentum components and internal quark modification of nuclei Short-Range Correlations (SRCs) dominated by np.
Hiroshi MASUI Kitami Institute of Technology
Role of Pions in Nuclei and Experimental Characteristics
Relativistic Chiral Mean Field Model for Finite Nuclei
Relativistic mean field theory and chiral symmetry for finite nuclei
Relativistic extended chiral mean field model for finite nuclei
軽い不安定核における 共鳴状態の構造 明 孝之 大阪工業大学 1 KEK 理論セミナー  
Impurity effects in p-sd shell and neutron-rich L hypernuclei
Pions in nuclei and tensor force
Content of the talk Exotic clustering in neutron-rich nuclei
Few-body approach for structure of light kaonic nuclei
Role of tensor force in light nuclei with tensor optimized shell model
Ab-initio nuclear structure calculations with MBPT and BHF
Osaka Institute of Technology
Presentation transcript:

Strong tensor correlation in light nuclei with tensor-optimized antisymmetrized molecular dynamics (TOAMD) International symposium on “High-resolution Spectroscopy and Tensor interactions” (HST15), Osaka, Takayuki MYO

2 Outline Tensor Optimized Shell Model (TOSM) Importance of 2p2h excitation involving high- momentum component for tensor correlation Applications to He, Li, Be isotopes Tensor Optimized AMD (TOAMD) Toward clustering with tensor correlation Formulation given in PTEP 2015, 073D02

3 Pion exchange interaction & V tensor  interaction Yukawa interaction involve large momentum Tensor operator -V tensor produces the high momentum component.

S D Energy MeV Kinetic19.88 Central Tensor LS P( L=2 ) 5.77% Radius 1.96 fm V central V tensor AV8’ Deuteron properties & tensor force R m (s)=2.00 fm R m (d)=1.22 fm d-wave is “spatially compact” (high momentum) r

c.m. excitation is excluded by Lawson’s method (0p0h+1p1h+2p2h) particle state Gaussian expansion for each orbit Gaussian basis function Hiyama, Kino, Kamimura PPNP51(2003)223 Shell model type configuration with mass number A Tensor-optimized shell model (TOSM) TM, Sugimoto, Kato, Toki, Ikeda PTP117(2007)257

particle hole 6 Tensor force matrix elements 6 Centrifugal potential pushes away D-wave.  +  (Bonn) AV8’ V T = V residual V T ≠ V residual M SD (r) = r 2 ·  S (r,b S ) · V T ·  D (r,b D ) Integrand of Tensor ME b D ~ b S b D ~ b S  st order 0p0h-2p2h 3.8 MeV 15.0 MeV high momentum

He, Li, Be isotopes in TOSM 7 TM, A. Umeya, H. Toki, K. Ikeda PRC84 (2011) TM, A. Umeya, H. Toki, K. Ikeda PRC86 (2012) TM, A. Umeya, K. Horii, H. Toki, K. Ikeda PTEP (2014) 033D01 TM, A. Umeya, H. Toki, K. Ikeda PTEP (2015) 073D02

T VTVT V LS VCVC E (exact) Kamada et al. PRC64 (Jacobi) Gaussian expansion at most with 9 bases variational calculation TM, H. Toki, K. Ikeda PTP121(2009)511 4 He in TOSM + central UCOM good convergence High- k components bring large kinetic energy

Selectivity of the tensor coupling in 4 He 9  L = 2  S =  2 Selectivity of S 12 s1s1 s2s2 s3s3 s4s4 1 + (pn) s1s1 s2s2 s3s3 s4s4 L=2 s1s1 s2s2 s3s3 s4s4 VTVT VTVT l 1 = l 2 = l 3 = l 4 =0 l 1 = l 2 =0 l 3 =1 l 4 =1 l 3 =0 l 4 =2

5-8 He with TOSM+UCOM Excitation energies in MeV Excitation energy spectra are reproduced well TM, A. Umeya, H. Toki, K. Ikeda PRC84 (2011)

5-9 Li with TOSM+UCOM Excitation energies in MeV Excitation energy spectra are reproduced well TM, A. Umeya, H. Toki, K. Ikeda PRC86(2012)

12 Radius of He & Li isotopes I. Tanihata et al., PLB289(‘92)261 G. D. Alkhazov et al., PRL78(‘97)2313 O. A. Kiselev et al., EPJA 25, Suppl. 1(‘05)215. P. Mueller et al., PRL99(2007) Expt HaloSkin A. Dobrovolsky, NPA 766(2006)1 TOSM with AV8’

8 Be spectrum 13  -  structure Argonne Group –Green’s function Monte Carlo C. Pieper, R. B. Wiringa, Annu.Rev.Nucl.Part.Sci.51 (2001) TUNL  ~ few MeV  < 1MeV

8 Be in TOSM  AV8’  V T  1.1, V LS  1.4 –simulate 4 He benchmark (Kamada et al., PRC64) correct level order (T=0,1) tensor contribution : T=0 > T=1  0p0h+2p2h with high- k –2  needs  4p4h. –spatial asymptotic form of 2  14   clustering TOSM Expt. (TUNL)  TOAMD

Tensor-Optimized Antisymmetrized Molecular Dynamics (TOAMD) 15 TM, H. Toki, K. Ikeda, H. Horiuchi, T. Suhara, PTEP 2015, 073D02 Toward the clustering with tensor correlation explicitly

(TOAMD) tensor correlation short-range correlation 2p2h 0p0h Gaussian expansion

Formulation of TOAMD 17 2p2h 4p4h 0p0h

Matrix elements of multi-body operator VTVT FDFD FDFD 2-body VTVT FDFD FDFD 4-body Matrix elements particle coordinate centroid range

Matrix elements with Fourier trans. Fourier transformation of the interaction V & F D, F S. –Y. Goto and H. Horiuchi, Prog. Theor. Phys., 62 (1979) 662 –Gaussian expansion of V, F D, F S for relative motion –Multi-body operators are represented in the separable form for particle coordinates. –Three-body interaction can be treated in the same manner. 19 relative single particle tensor-type overlap Quadratic + Linear terms of k

Matrix elements with Fourier trans. Example : F D  V T VTVT FDFD 2-body (2-body)  (2-body) = (2-body)+(3-body)+(4-body) k -integral spatial part (tensor) 2 spin-isospin partantisymmetrization a1a1 a2a2 B ij =  i  j  overlap

Matrix elements with Fourier trans. Example : F D  V T 21 VTVT FDFD 3-body (2-body)  (2-body) = (2-body)+(3-body)+(4-body) k -integral spatial part (tensor) 2 spin-isospin partantisymmetrization a1a1 a2a2 B ij =  i  j  overlap

TOSM vs. TOAMD 22 TOSMTOAMD Correlation 1p1h, 2p2h (single particle) Relative motion in F D, F S CM excitationLawson method Nothing with single Hole states harmonic oscillator basis Can optimize in each basis Short-range repulsion central-UCOM Correlation function, F S

Results 3-body 2-body VTVT FDFD FDFD FDFD FDFD VTVT others... FDFD FDFD VTVT FSFS FSFS T FSFS FSFS T

3 H energy surface 24 Good convergence for Gaussian numbers N G. Obtain the saturation property with good radius. Gaussian expansion compactwide Radius=1.76 fm

Three-body term in energy of 3 H 25 No saturation point with one- & two-body terms. Three-body term has a saturation behavior. compactwide 3-body term 1& 2-body terms Full Radius=1.76 fm

Energy components E AMD E TOAMD TVCVC VTVT V LS PDPD 3H 3H He Be in MeV preliminary in progress

Correlation functions F D, F S in 3 H 27 2  r 2 F D 3 E F S 1 E F S 3 E same trend in 3 H, 4 He, 8 Be preliminary

28 Summary Tensor-Optimized Shell Model (TOSM) using V bare. –Strong tensor correlation from 0p0h-2p2h involving high- k components. –He, Li, Be isotopes : Energy spectra, Radius of n -rich nuclei. –For 8 Be, two aspects : grand state region & highly excited states, which indicates of more configurations, such as  states. Tensor-Optimized AMD (TOAMD). –Two-kinds of correlation functions F D (tensor) & F S (short-range) –Three-body term contributes to the energy saturation. –Ranges of F D, F S are not short. –Spatially compact behavior of F D produces high- k component.