L27 April 241 Semiconductor Device Modeling & Characterization Lecture 27 Professor Ronald L. Carter Spring 2001.

Slides:



Advertisements
Similar presentations
Professor Ronald L. Carter
Advertisements

Semiconductor Device Modeling and Characterization – EE5342 Lecture 35 – Spring 2011 Professor Ronald L. Carter
CMOS Digital Integrated Circuits 1 Lec 5 SPICE Modeling of MOSFET.
L28 April 281 EE5342 – Semiconductor Device Modeling and Characterization Lecture 28 - Spring 2005 Professor Ronald L. Carter
© Digital Integrated Circuits 2nd Devices Digital Integrated Circuits A Design Perspective The Devices Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic.
Digital Integrated Circuits A Design Perspective
L14 March 31 EE5342 – Semiconductor Device Modeling and Characterization Lecture 14 - Spring 2005 Professor Ronald L. Carter
L30 May 61 EE5342 – Semiconductor Device Modeling and Characterization Lecture 30 - Spring 2004 Professor Ronald L. Carter
EE213 VLSI Design S Daniels Channel Current = Rate of Flow of Charge I ds = Q/τ sd Derive transit time τ sd τ sd = channel length (L) / carrier velocity.
Professor Ronald L. Carter
© Digital Integrated Circuits 2nd Devices Digital Integrated Circuits A Design Perspective The Devices Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic.
The Devices Digital Integrated Circuit Design Andrea Bonfanti DEIB
Modern VLSI Design 3e: Chapter 2 Copyright  1998, 2002 Prentice Hall PTR Topics n Derivation of transistor characteristics.
EE 5340 Semiconductor Device Theory Lecture 26 - Fall 2010 Professor Ronald L. Carter
Electronic Circuits Laboratory EE462G Lab #5 Biasing MOSFET devices.
L11 February 241 EE5342 – Semiconductor Device Modeling and Characterization Lecture 11 - Spring 2004 Professor Ronald L. Carter
HW (Also, use google scholar to find one or two well cited papers on symmetric models of MOSFET, and quickly study them.)
L23 08April031 Semiconductor Device Modeling and Characterization EE5342, Lecture 23 Spring 2003 Professor Ronald L. Carter
EE141 © Digital Integrated Circuits 2nd Devices 1 Lecture 5. CMOS Device (cont.) ECE 407/507.
Device models Mohammad Sharifkhani.
Professor Ronald L. Carter
Digital Integrated Circuits A Design Perspective
EE 5340 Semiconductor Device Theory Lecture 27 – Spring 2011 Professor Ronald L. Carter
L27 23Apr021 Semiconductor Device Modeling and Characterization EE5342, Lecture 27 -Sp 2002 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 28 - Fall 2009 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 25 – Spring 2011 Professor Ronald L. Carter
EE5342 – Semiconductor Device Modeling and Characterization Lecture 23 April 12, 2010 Professor Ronald L. Carter
L26 April 261 EE5342 – Semiconductor Device Modeling and Characterization Lecture 26 - Spring 2005 Professor Ronald L. Carter
L25 April 171 Semiconductor Device Modeling & Characterization Lecture 25 Professor Ronald L. Carter Spring 2001.
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Recall Last Lecture The MOSFET has only one current, ID
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 25 – Spring 2011
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 26 - Fall 2009
Recall Last Lecture The MOSFET has only one current, ID
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 24 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 23 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 27 - Fall 2003
Professor Ronald L. Carter
Professor Ronald L. Carter
Recall Last Lecture The MOSFET has only one current, ID
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 2303/001 - Electronics I Summer 2001 Lecture 15
Semiconductor Device Modeling & Characterization Lecture 21
Semiconductor Device Modeling & Characterization Lecture 20
EE 5340 Semiconductor Device Theory Lecture 29 - Fall 2010
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 28 - Fall 2003
Semiconductor Device Modeling & Characterization Lecture 23
Presentation transcript:

L27 April 241 Semiconductor Device Modeling & Characterization Lecture 27 Professor Ronald L. Carter Spring 2001

L27 April 242 MOSFET Device Structre Fig. 4-1, M&A*

L27 April 243 n-channel enh. circuit model G D B S C gs C gd C gb C bs C bd RD RG RB RDS Idrain D SS D SD

L27 April 244 SPICE mosfet Model Instance CARM*, Ch. 4, p. 290 L = Ch. L. [m] W = Ch. W. [m] AD = Drain A [m 2 ] AS = Source A[m 2 ] NRD, NRS = D and S diff in squares M = device multiplier

L27 April 245 SPICE mosfet model levels Level 1 is the Schichman-Hodges model Level 2 is a geometry-based, analytical model Level 3 is a semi-empirical, short- channel model Level 4 is the BSIM1 model Level 5 is the BSIM2 model, etc.

L27 April 246 SPICE Parameters Level (Static)

L27 April 247 SPICE Parameters Level (Static) * 0 = aluminum gate, 1 = silicon gate opposite substrate type, 2 = silicon gate same as substrate.

L27 April 248 SPICE Parameters Level (Q & N)

L27 April 249 Level 1 Static Const. For Device Equations Vfb = -TPG*EG/2 -Vt*ln(NSUB/ni) - q*NSS*TOX/eOx VTO = as given, or = Vfb + PHI + GAMMA*sqrt(PHI) KP = as given, or = UO*eOx/TOX CAPS are spice pars., technological constants are lower case

L27 April 2410 Level 1 Static Const. For Device Equations  = KP*[W/(L-2*LD)] = 2*K, K not spice GAMMA = as given, or = TOX*sqrt(2*eSi*q*NSUB)/eOx 2*phiP = PHI = as given, or = 2*Vt*ln(NSUB/ni) I SD = as given, or = JS*AD I SS = as given, or = JS*AS

L27 April 2411 Level 1 Static Device Equations vgs < VTH, ids = 0 VTH < vds + VTH < vgs, id = KP*[W/(L-2*LD)]*[vgs-VTH-vds/2] *vds*(1 + LAMBDA*vds) VTH < vgs < vds + VTH, id = KP*[W/(L-2*LD)]*(vgs - VTH)^2 *(1 + LAMBDA*vds)

L27 April 2412 SPICE Parameters Level 2

L27 April 2413 SPICE Parameters Level 2 & 3

L27 April 2414 Level 2 Static Device Equations Accounts for variation of channel potential for 0 < y < L For vds < vds,sat = vgs - Vfb - PHI +  2 *[1-sqrt(1+2(vgs-Vfb-vbs)/  2 ] id,ohmic = [  /(1-LAMBDA*vds)] *[vgs - Vfb - PHI - vds/2]*vds -2  [vds+PHI-vbs) 1.5 -(PHI-vbs) 1.5 ]/3

L27 April 2415 Level 2 Static Device Eqs. (cont.) For vds > vds,sat id = id,sat/(1-LAMBDA*vds) where id,sat = id,ohmic(vds,sat)

L27 April 2416 Level 2 Static Device Eqs. (cont.) Mobility variation KP’ = KP*[(esi/eox)*UCRIT*TOX /(vgs-VTH-UTRA*vds)] UEXP This replaces KP in all other formulae.

L27 April 2417 SPICE Parameters Level 3

L27 April 2418 References CARM = Circuit Analysis Reference Manual, MicroSim Corporation, Irvine, CA, M&A = Semiconductor Device Modeling with SPICE, 2nd ed., by Paolo Antognetti and Giuseppe Massobrio, McGraw-Hill, New York, 1993.