1 Pertemuan 22 Regresi dan Korelasi Linier Sederhana-2 Matakuliah: A0064 / Statistik Ekonomi Tahun: 2005 Versi: 1/1.

Slides:



Advertisements
Similar presentations
10-1 COMPLETE BUSINESS STATISTICS by AMIR D. ACZEL & JAYAVEL SOUNDERPANDIAN 6 th edition (SIE)
Advertisements

13- 1 Chapter Thirteen McGraw-Hill/Irwin © 2005 The McGraw-Hill Companies, Inc., All Rights Reserved.
Analisis Varians Dwi Arah Pertemuan 22 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.
Regresi Linear Sederhana Pertemuan 01 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.
Pengujian Parameter Regresi Ganda Pertemuan 22 Matakuliah: L0104/Statistika Psikologi Tahun: 2008.
Uji Kelinearan dan Keberartian Regresi Pertemuan 02 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.
Regresi dan Korelasi Linear Pertemuan 19
Regression Analysis Module 3. Regression Regression is the attempt to explain the variation in a dependent variable using the variation in independent.
Chapter 10 Simple Regression.
1 Pertemuan 07 Pendugaan Parameter Matakuliah: I0262 – Statistik Probabilitas Tahun: 2007 Versi: Revisi.
1 Pertemuan 18 Pembandingan Dua Populasi-2 Matakuliah: A0064 / Statistik Ekonomi Tahun: 2005 Versi: 1/1.
1 Pertemuan 23 Deret Berkala, Peramalan, dan Angka Indeks-1 Matakuliah: A0064 / Statistik Ekonomi Tahun: 2005 Versi: 1/1.
Chapter 13 Introduction to Linear Regression and Correlation Analysis
1 Pertemuan 3 Statistik Deskriptif-1 Matakuliah: A0064 / Statistik Ekonomi Tahun: 2005 Versi: 1/1.
1 Pertemuan 13 Uji Koefisien Korelasi dan Regresi Matakuliah: A0392 – Statistik Ekonomi Tahun: 2006.
Pengujian Parameter Koefisien Korelasi Pertemuan 04 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.
Chapter Topics Types of Regression Models
1 Pertemuan 1 Pendahuluan-1 Matakuliah: A0064/Statistik Ekonomi Tahun: 2005 Versi: >
1 Pertemuan 12 Sampling dan Sebaran Sampling-2 Matakuliah: A0064 / Statistik Ekonomi Tahun: 2005 Versi: 1/1.
Simple Linear Regression Analysis
1 Pertemuan 10 Analisis Ragam (Varians) - 1 Matakuliah: I0262 – Statistik Probabilitas Tahun: 2007 Versi: Revisi.
1 Pertemuan 2 Pendahuluan-2 Matakuliah: A0064/Statistik Ekonomi Tahun: 2005 Versi: 1/1.
1 Pertemuan 19 Analisis Ragam (ANOVA)-1 Matakuliah: A0064 / Statistik Ekonomi Tahun: 2005 Versi: 1/1.
1 Pertemuan 08 Pengujian Hipotesis 1 Matakuliah: I0272 – Statistik Probabilitas Tahun: 2005 Versi: Revisi.
Korelasi dalam Regresi Linear Sederhana Pertemuan 03 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.
© 2000 Prentice-Hall, Inc. Chap Forecasting Using the Simple Linear Regression Model and Correlation.
Pertemua 19 Regresi Linier
1 Pertemuan 25 Metode Non Parametrik-1 Matakuliah: A0064 / Statistik Ekonomi Tahun: 2005 Versi: 1/1.
Korelasi dan Regresi Linear Sederhana Pertemuan 25
Chapter 14 Introduction to Linear Regression and Correlation Analysis
1 Pertemuan 11 Sampling dan Sebaran Sampling-1 Matakuliah: A0064 / Statistik Ekonomi Tahun: 2005 Versi: 1/1.
1 Pertemuan 13 Regresi Linear dan Korelasi Matakuliah: I0262 – Statistik Probabilitas Tahun: 2007 Versi: Revisi.
Chapter 7 Forecasting with Simple Regression
Introduction to Regression Analysis, Chapter 13,
Lecture 5 Correlation and Regression
Introduction to Linear Regression and Correlation Analysis
Regression Analysis and Multiple Regression
Simple Linear Regression Models
Bivariate Regression (Part 1) Chapter1212 Visual Displays and Correlation Analysis Bivariate Regression Regression Terminology Ordinary Least Squares Formulas.
© 2003 Prentice-Hall, Inc.Chap 13-1 Basic Business Statistics (9 th Edition) Chapter 13 Simple Linear Regression.
Chap 12-1 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. A Course In Business Statistics 4 th Edition Chapter 12 Introduction to Linear.
EQT 373 Chapter 3 Simple Linear Regression. EQT 373 Learning Objectives In this chapter, you learn: How to use regression analysis to predict the value.
Applied Quantitative Analysis and Practices LECTURE#23 By Dr. Osman Sadiq Paracha.
Statistics for Business and Economics 8 th Edition Chapter 11 Simple Regression Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall Ch.
Lecture 10: Correlation and Regression Model.
Perbandingan dua populasi Pertemuan 8 Matakuliah: D Statistika dan Aplikasinya Tahun: 2010.
Copyright © 2011 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Simple Linear Regression Analysis Chapter 13.
Statistics for Managers Using Microsoft® Excel 5th Edition
1 1 Slide The Simple Linear Regression Model n Simple Linear Regression Model y =  0 +  1 x +  n Simple Linear Regression Equation E( y ) =  0 + 
1 Pertemuan 13 Selang Kepercayaan-1 Matakuliah: A0064 / Statistik Ekonomi Tahun: 2005 Versi: 1/1.
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 12-1 Chapter 12 Simple Linear Regression Statistics for Managers Using.
1 Pertemuan 4 Statistik Deskriptif-2 Matakuliah: A0064 / Statistik Ekonomi Tahun: 2005 Versi: 1/1.
1 Pertemuan 17 Pembandingan Dua Populasi-1 Matakuliah: A0064 / Statistik Ekonomi Tahun: 2005 Versi: 1/1.
Chapter 12 Simple Regression Statistika.  Analisis regresi adalah analisis hubungan linear antar 2 variabel random yang mempunyai hub linear,  Variabel.
1 Pertemuan 26 Metode Non Parametrik-2 Matakuliah: A0064 / Statistik Ekonomi Tahun: 2005 Versi: 1/1.
Bivariate Regression. Bivariate Regression analyzes the relationship between two variables. Bivariate Regression analyzes the relationship between two.
Chapter 13 Simple Linear Regression
METODE PERAMALAN Pertemuan 16
Chapter 20 Linear and Multiple Regression
Pertemuan 10 Analisis data -I
Regresi dan Korelasi Pertemuan 10
Pertemuan 22 Analisis Varians Untuk Regresi
Pengujian Parameter Regresi dan Korelasi Pertemuan 20
Linear Regression and Correlation Analysis
INFERENSIA KORELASI DAN REGRESI LINIER SEDERHANA Pertemuan 12
Chapter 11 Simple Regression
Chapter 13 Simple Linear Regression
PENGOLAHAN DAN PENYAJIAN
Presentation transcript:

1 Pertemuan 22 Regresi dan Korelasi Linier Sederhana-2 Matakuliah: A0064 / Statistik Ekonomi Tahun: 2005 Versi: 1/1

2 Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : Menyimpulkan hasil perhitungan model regresi linier sederhana dengan peramalan/pengambilan keputusan

3 Outline Materi Uji Hipotesis tentang Hubungan Regresi Koefisien Determinasi Menggunakan Model Regresi untuk Peramalan

COMPLETE 5 t h e d i t i o n BUSINESS STATISTICS Aczel/Sounderpandian McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., Example 10-1: = r SS XY SS X Y   ()().. *Note: If  0, b 1 >0 Covariance and Correlation

COMPLETE 5 t h e d i t i o n BUSINESS STATISTICS Aczel/Sounderpandian McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., H 0 :  = 0(No linear relationship) H 1 :  0(Some linear relationship) Test Statistic: Hypothesis Tests for the Correlation Coefficient

COMPLETE 5 t h e d i t i o n BUSINESS STATISTICS Aczel/Sounderpandian McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., Y X Y X Y X Constant YUnsystematic VariationNonlinear Relationship A hypothesis test for the existence of a linear relationship between X and Y: H 0 H 1 Test statistic for the existence of a linear relationship between X and Y: (-) where is the least-squares estimate ofthe regression slope and() is the standard error of. When thenull hypothesis is true, the statistic has a distribution with- degrees offreedom. : : ()      t n b sb bsbb tn 10-6 Hypothesis Tests about the Regression Relationship

COMPLETE 5 t h e d i t i o n BUSINESS STATISTICS Aczel/Sounderpandian McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., Hypothesis Tests for the Regression Slope

COMPLETE 5 t h e d i t i o n BUSINESS STATISTICS Aczel/Sounderpandian McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., The coefficient of determination, r 2, is a descriptive measure of the strength of the regression relationship, a measure of how well the regression line fits the data.. { Y X { } Total Deviation Explained Deviation Unexplained Deviation Percentage of total variation explained by the regression How Good is the Regression?

COMPLETE 5 t h e d i t i o n BUSINESS STATISTICS Aczel/Sounderpandian McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., Y X r 2 =0SSE SST Y X r 2 =0.90 SSESSE SST SSR Y X r 2 =0.50 SSE SST SSR The Coefficient of Determination

COMPLETE 5 t h e d i t i o n BUSINESS STATISTICS Aczel/Sounderpandian McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., Analysis of Variance and an F Test of the Regression Model

COMPLETE 5 t h e d i t i o n BUSINESS STATISTICS Aczel/Sounderpandian McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., Template (partial output) that displays Analysis of Variance and an F Test of the Regression Model

COMPLETE 5 t h e d i t i o n BUSINESS STATISTICS Aczel/Sounderpandian McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., Residual Analysis and Checking for Model Inadequacies

COMPLETE 5 t h e d i t i o n BUSINESS STATISTICS Aczel/Sounderpandian McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., Normal Probability Plot of the Residuals Flatter than Normal

COMPLETE 5 t h e d i t i o n BUSINESS STATISTICS Aczel/Sounderpandian McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., Normal Probability Plot of the Residuals More Peaked than Normal

COMPLETE 5 t h e d i t i o n BUSINESS STATISTICS Aczel/Sounderpandian McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., Normal Probability Plot of the Residuals More Positively Skewed than Normal More Positively Skewed than Normal

COMPLETE 5 t h e d i t i o n BUSINESS STATISTICS Aczel/Sounderpandian McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., Normal Probability Plot of the Residuals More Negatively Skewed than Normal More Negatively Skewed than Normal

COMPLETE 5 t h e d i t i o n BUSINESS STATISTICS Aczel/Sounderpandian McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., Point Prediction A single-valued estimate of Y for a given value of X obtained by inserting the value of X in the estimated regression equation. Prediction Interval For a value of Y given a value of X Variation in regression line estimate Variation of points around regression line For an average value of Y given a value of X Variation in regression line estimate Point Prediction A single-valued estimate of Y for a given value of X obtained by inserting the value of X in the estimated regression equation. Prediction Interval For a value of Y given a value of X Variation in regression line estimate Variation of points around regression line For an average value of Y given a value of X Variation in regression line estimate Use of the Regression Model for Prediction

COMPLETE 5 t h e d i t i o n BUSINESS STATISTICS Aczel/Sounderpandian McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., X Y X Y Regression line Upper limit on slope Lower limit on slope 1) Uncertainty about the slope of the regression line X Y X Y Regression line Upper limit on intercept Lower limit on intercept 2) Uncertainty about the intercept of the regression line Errors in Predicting E[Y|X]

COMPLETE 5 t h e d i t i o n BUSINESS STATISTICS Aczel/Sounderpandian McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., X Y X Prediction Interval for E[Y|X] Y Regression line The prediction band for E[Y|X] is narrowest at the mean value of X. The prediction band widens as the distance from the mean of X increases. Predictions become very unreliable when we extrapolate beyond the range of the sample itself. The prediction band for E[Y|X] is narrowest at the mean value of X. The prediction band widens as the distance from the mean of X increases. Predictions become very unreliable when we extrapolate beyond the range of the sample itself. Prediction Interval for E[Y|X] Prediction band for E[Y|X]

COMPLETE 5 t h e d i t i o n BUSINESS STATISTICS Aczel/Sounderpandian McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., Additional Error in Predicting Individual Value of Y 3) Variation around the regression line X Y Regression line X Y X Prediction Interval for E[Y|X] Y Regression line Prediction band for E[Y|X] Prediction band for Y

COMPLETE 5 t h e d i t i o n BUSINESS STATISTICS Aczel/Sounderpandian McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., Prediction Interval for a Value of Y

COMPLETE 5 t h e d i t i o n BUSINESS STATISTICS Aczel/Sounderpandian McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., Prediction Interval for the Average Value of Y

COMPLETE 5 t h e d i t i o n BUSINESS STATISTICS Aczel/Sounderpandian McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., Template Output with Prediction Intervals

COMPLETE 5 t h e d i t i o n BUSINESS STATISTICS Aczel/Sounderpandian McGraw-Hill/Irwin © The McGraw-Hill Companies, Inc., The Solver Method for Regression See the text for instructions. The solver macro available in EXCEL can also be used to conduct a simple linear regression. See the text for instructions.

25 Penutup Regresi dan Korelasi linier Sederhana pada hakekatnya merupakan suatu pendekatan/model untuk mencari hubungan sebab akibat (secara linier) antara dua variabel, yaitu variabel bebas (variabel pengaruh) dan variabel tak bebas (variabel terpengaruh) yang selanjutnya dapat digunakan untuk peramalan atau prakiraan