TNO Physics and Electronics Laboratory    J. Kusmierczyk-Michulec G. de Leeuw.

Slides:



Advertisements
Similar presentations
OMI follow-on Project Toekomstige missies gericht op troposfeer en klimaat Pieternel Levelt, KNMI.
Advertisements

SCIAMACHY Calibration Review, ESTEC, 11 September 2002 Tilstra, De Graaf, Stammes First verification of SCIAMACHY’s polarisation measurements Gijs Tilstra,
Validation of SCIA’s reflectance and polarisation (Acarreta, de Graaf, Tilstra, Stammes, Krijger ) Envisat Validation Workshop, Frascati, 9-13 December.
WP 5 : Clouds & Aerosols L.G. Tilstra and P. Stammes Royal Netherlands Meteorological Institute (KNMI) SCIAvisie Meeting, KNMI, De Bilt, Absorbing.
WP 3: Absorbing Aerosol Index (AAI) WP 10: Level-1 validation L.G. Tilstra 1, I. Aben 2, and P. Stammes 1 1 Royal Netherlands Meteorological Institute.
Validation of SCIAMACHY using POLDER as a reference 25 April 2006.
Development of a Simulated Synthetic Natural Color ABI Product for GOES-R AQPG Hai Zhang UMBC 1/12/2012 GOES-R AQPG workshop.
Gerrit de Leeuw 1,2,3, Larisa Sogacheva1, Pekka Kolmonen 1, Anu-Maija Sundström 2, Edith Rodriguez 1 1 FMI, Climate Change Unit, Helsinki, Finland 2 Univ.
A U R A Satellite Mission T E S
Envisat Symposium, April 23 – 27, 2007, Montreux bremen.de SADDU Meeting, June 2008, IUP-Bremen Cloud sensitivity studies.
Variability of Total Column Ozone During JAN JUN 2011: Consistency Among Four Independent Multi-year Data Records E.W. Chiou ADNET Systems Inc.,
Constraining aerosol sources using MODIS backscattered radiances Easan Drury - G2
Remote Sensing of Pollution in China Dan Yu December 10 th 2009.
Development of the SEVIRI Aerosol Retrieval Algorithm (SARA) Aerosol retrievals using MSG-SEVIRI images Y.S. Bennouna and G. de Leeuw.
ESTEC July 2000 Estimation of Aerosol Properties from CHRIS-PROBA Data Jeff Settle Environmental Systems Science Centre University of Reading.
METO 621 Lesson 27. Albedo 200 – 400 nm Solar Backscatter Ultraviolet (SBUV) The previous slide shows the albedo of the earth viewed from the nadir.
An Introduction to Using Angular Information in Aerosol Remote Sensing Richard Kleidman SSAI/NASA Goddard Lorraine Remer UMBC / JCET Robert C. Levy NASA.
Spaceborne Weather Radar
WP 3: Absorbing Aerosol Index (AAI) WP 10: Level-1 validation L.G. Tilstra 1, I. Aben 2, and P. Stammes 1 1 Royal Netherlands Meteorological Institute.
EARLINET and Satellites: Partners for Aerosol Observations Matthias Wiegner Universität München Meteorologisches Institut (Satellites: spaceborne passive.
Quality of the official SCIAMACHY Absorbing Aerosol Index (AAI) level-2 product L.G. Tilstra and P. Stammes Royal Netherlands Meteorological Institute.
Earth Observation Science Recent and potential scientific achievements of the (A)ATSR Series - and some possibilities for synergy with MERIS David Llewellyn-Jones.
AMFIC: Aerosol retrieval Gerrit de Leeuw, FMI/UHEL/TNO Pekka Kolmonen, FMI Anu-Maija Sundström, UHEL Larisa Sogacheva, UHEL Juha-Pekka Luntama, FMI Sini.
Ocean Color Radiometer Measurements of Long Island Sound Coastal Observational platform (LISCO): Comparisons with Satellite Data & Assessments of Uncertainties.
1 Aerosol information from the UV-visible spectrometer GOME-2 Piet Stammes, KNMI, De Bilt, The Netherlands 7 November 2012.
ARCTAS BrO Measurements from the OMI and GOME-2 Satellite Instruments
A. Bracher, L. N. Lamsal, M. Weber, J. P. Burrows University of Bremen, FB 1, Institute of Environmental Physics, P O Box , D Bremen, Germany.
Latest results on the comparison between OMI and ground-based data at two European sites (Rome and Villeneuve d’Ascq) Virginie Buchard, Colette Brogniez,
Surface Reflectivity from OMI: Effects of Snow on OMI NO 2 Gray O’Byrne 1, Randall Martin 1,2, Aaron van Donkelaar 1, Joanna Joiner 3, Edward A. Celarier.
GOES and GOES-R ABI Aerosol Optical Depth (AOD) Validation Shobha Kondragunta and Istvan Laszlo (NOAA/NESDIS/STAR), Chuanyu Xu (IMSG), Pubu Ciren (Riverside.
1 of 26 Characterization of Atmospheric Aerosols using Integrated Multi-Sensor Earth Observations Presented by Ratish Menon (Roll Number ) PhD.
AMFIC final meeting LAP/Auth validation activities Dimitris Balis & MariLiza Koukouli Laboratory of Atmospheric Physics Aristotle University of Thessaloniki.
Retrieval of Ozone Profiles from GOME (and SCIAMACHY, and OMI, and GOME2 ) Roeland van Oss Ronald van der A and Johan de Haan, Robert Voors, Robert Spurr.
The Second TEMPO Science Team Meeting Physical Basis of the Near-UV Aerosol Algorithm Omar Torres NASA Goddard Space Flight Center Atmospheric Chemistry.
Intercomparison of OMI NO 2 and HCHO air mass factor calculations: recommendations and best practices A. Lorente, S. Döerner, A. Hilboll, H. Yu and K.
Validation of OMI NO 2 data using ground-based spectrometric NO 2 measurements at Zvenigorod, Russia A.N. Gruzdev and A.S. Elokhov A.M. Obukhov Institute.
Synergy of MODIS Deep Blue and Operational Aerosol Products with MISR and SeaWiFS N. Christina Hsu and S.-C. Tsay, M. D. King, M.-J. Jeong NASA Goddard.
Harmonizationof GOME, SCIAMACHY, GOME-2 ozone cross-sections Anna Serdyuchenko, John P. Burrows, Mark Weber, Wissam Chehade University of Bremen, Germany.
SATELLITE REMOTE SENSING OF TERRESTRIAL CLOUDS Alexander A. Kokhanovsky Institute of Remote Sensing, Bremen University P. O. Box Bremen, Germany.
1 COST 723 WG1 Meeting 1 October 6-7, 2003 University of Bern, CH Availability of UTLS relevant SCIAMACHY data C. von.
SCIAMACHY TOA Reflectance Correction Effects on Aerosol Optical Depth Retrieval W. Di Nicolantonio, A. Cacciari, S. Scarpanti, G. Ballista, E. Morisi,
Suomi-NPP Visible Infrared Imaging Radiometer Suite (VIIRS) was launched on October 28, 2011 to provide various atmospheric and land related environmental.
SEMIANALYTICAL CLOUD RETRIEVAL ALGORITHM AND ITS APPLICATION TO DATA FROM MULTIPLE OPTICAL INSTRUMENTS ON SPACEBORNE PLATFORMS: SCIAMACHY, MERIS, MODIS,
Evaluation of model simulations with satellite observed NO 2 columns and surface observations & Some new results from OMI N. Blond, LISA/KNMI P. van Velthoven,
Center for Satellite Applications and Research (STAR) Review 09 – 11 March 2010 Requirement: Provide information to air quality decision makers and improve.
The Use of Spectral and Angular Information In Remote Sensing
ESA :DRAGON/ EU :AMFIC Air quality Monitoring and Forecasting In China Ronald van der A, KNMI Bas Mijling, KNMI Hennie Kelder KNMI, TUE DRAGON /AMFIC project.
Rutherford Appleton Laboratory Requirements Consolidation of the Near-Infrared Channel of the GMES-Sentinel-5 UVNS Instrument: FP, 25 April 2014, ESTEC.
Extinction measurements
DOAS workshop 2015, Brussels, July 2015
Aerosol retrieval from spectral measurements in twilight conditions: ground-based and satellite-based cases Nina Mateshvili (1), Didier Fussen (1), Giuli.
V2.0 minus V2.5 RSAS Tangent Height Difference Orbit 3761
Near UV aerosol products
Deep Convective Clouds (DCC) BRDF Characterization Using PARASOL Bidirectional Observations Bertrand Fougnie CNES.
Requirements Consolidation of the Near-Infrared Channel of the GMES-Sentinel-5 UVNS Instrument: FP, 25 April 2014, ESTEC Height-resolved aerosol R.Siddans.
AIRS (Atmospheric Infrared Sounder) Instrument Characteristics
Marcel Dobber EUMETSAT, Darmstadt.
Mina Kang1, Myoung-Hwan Ahn1, Quintus Kleipool2 and Pepijn Veefkind2
Deep Convective Cloud BRDF characterization using PARASOL
X. Liu1, C.E. Sioris1,2, K. 11/14/2018 Ozone Profile and Tropospheric Ozone Retrieval from SCIAMACHY Nadir Measurements:
The Successor of the TOU
Hyperspectral radiation: measurements and modelling
A Multi-angle Aerosol Optical Depth Retrieval Algorithm for GOES
Changchun Institute of Optics Fine Mechanics and Physics
Diurnal Variation of Nitrogen Dioxide
Deep Convective Clouds (DCC) BRDF Characterization Using PARASOL Bidirectional Observations Bertrand Fougnie CNES.
Chris Sioris Kelly Chance
Preliminary SCIAMACHY Lunar observations as intercalibration source
Retrieval of SO2 Vertical Columns from SCIAMACHY and OMI: Air Mass Factor Algorithm Development and Validation Chulkyu Lee, Aaron van Dokelaar, Gray O’Byrne:
Cloud trends from GOME, SCIAMACHY and OMI
Presentation transcript:

TNO Physics and Electronics Laboratory    J. Kusmierczyk-Michulec G. de Leeuw

7 December 2004Aerosol optical thickness retrieval launched in March 2002 high-resolution ( nm) spectrometer wavelength range: nm Swath Dim.: 960 km (cross track) by 25 km (along track at nadir) Nadir scan: 4 pixels of 240 km (cross track) by 25 km (along track) Limb scan: 960 km (cross track) vertical tangential step size 3.0 km The SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) on board the ESA Envisat satellite

7 December 2004Aerosol optical thickness retrieval The Global Ozone Monitoring Experiment (GOME) GOME aboard ERS-2 (courtesy of ESA) Launched in April channel grating spectrometer Spectral resolution nm Wavelength range: nm One across-track : 3 ground pixels: 40 km x 320 km

7 December 2004Aerosol optical thickness retrieval Aerosol retrieval algorithm for SCIAMACHY/GOME where  atm =  R +  a +  aR  s is the zenith solar angle  is the zenith observation angle  s -  is the relative azimuth between the incident and observation vertical planes

7 December 2004Aerosol optical thickness retrieval Ra is based on the sunphotometer measurements in Ispra ( ) (Holben et al. 1998) Rtoa - GOME data TOA reflectance - example

7 December 2004Aerosol optical thickness retrieval LER-Lambertian Equivalent Reflectance derived from reflectances measured by GOME (R. Koelemeijer et al., 2003) Spectral reflectances of natural surfaces -examples

7 December 2004Aerosol optical thickness retrieval Approach over land/water for GOME Reflectances at TOA measured by GOME (380, 440, 463, 495, 555, 670 nm) Cloud screening FRESCO algorithm (Koelemijer et al., 2001,2002) Correction for ozone absorption Surface correction GOME surface reflectances database LUT of aerosol/atmospheric/Rayleigh reflectances for a given satellite and solar geometry 3 predominantly aerosol types -“maritime”, - “continental”, - “urban”, The best fit with aerosol model AOD

7 December 2004Aerosol optical thickness retrieval 

7 December 2004Aerosol optical thickness retrieval 

7 December 2004Aerosol optical thickness retrieval 

7 December 2004Aerosol optical thickness retrieval 

7 December 2004Aerosol optical thickness retrieval 

7 December 2004Aerosol optical thickness retrieval 

7 December 2004Aerosol optical thickness retrieval 

7 December 2004Aerosol optical thickness retrieval 

7 December 2004Aerosol optical thickness retrieval 

7 December 2004Aerosol optical thickness retrieval Outline 

7 December 2004Aerosol optical thickness retrieval 

7 December 2004Aerosol optical thickness retrieval 

7 December 2004Aerosol optical thickness retrieval 

7 December 2004Aerosol optical thickness retrieval  

7 December 2004Aerosol optical thickness retrieval  

7 December 2004Aerosol optical thickness retrieval  We thank the PI investigators: Didier Tanré, Brent Holben, Philippe Goloub and Giuseppe Zibordi, and their staff for establishing and maintaining the AERONET sites used in this investigation. We acknowledge Piet Stammes and Martin de Graaf for kindly providing us GOME data and the results from FRESCO algorithm. The algorithm was developed as part of the EO-037 project of the National Data User Support Program of the Netherlands Space Research Organization (SRON).

7 December 2004Aerosol optical thickness retrieval Illustration of the retrieval process- example 1

7 December 2004Aerosol optical thickness retrieval Illustration of the retrieval process – example 2

7 December 2004Aerosol optical thickness retrieval Illustration of the retrieval process – example 3

7 December 2004Aerosol optical thickness retrieval 