2.4 Rates of Change and Tangent Lines Devil’s Tower, Wyoming.

Slides:



Advertisements
Similar presentations
2.7 Tangents, Velocities, & Rates of Change
Advertisements

2.4 Rates of Change and Tangent Lines Devils Tower, Wyoming Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 1993.
Unit 6 – Fundamentals of Calculus Section 6
The Derivative.
2.1 Derivatives and Rates of Change. The slope of a line is given by: The slope of the tangent to f(x)=x 2 at (1,1) can be approximated by the slope of.
The Derivative and the Tangent Line Problem Lesson 3.1.
2.4 Rates of Change and Tangent Lines Devil’s Tower, Wyoming Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 1993.
Equation of a Tangent Line
Chapter 2  2012 Pearson Education, Inc. Section 2.4 Rates of Change and Tangent Lines Limits and Continuity.
2.4 Rates of Change and Tangent Lines. What you’ll learn about Average Rates of Change Tangent to a Curve Slope of a Curve Normal to a Curve Speed Revisited.
Warmup describe the interval(s) on which the function is continuous
Rate of change and tangent lines
Rates of Change and Tangent Lines
2.4 Rates of Change and Tangent Lines Devil’s Tower, Wyoming Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 1993.
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Prentice Hall 2.4 Rates of Change and Tangent Lines.
2.4 RATES OF CHANGE & TANGENT LINES. Average Rate of Change  The average rate of change of a quantity over a period of time is the slope on that interval.
Sections Rates of Change and the Derivative.
The Derivative Chapter 3:. What is a derivative? A mathematical tool for studying the rate at which one quantity changes relative to another.
Business Calculus Rates of Change Types of Change  Average rate of change: the average rate of change of y with respect to x is a ratio of.
1.4 – Differentiation Using Limits of Difference Quotients
16.3 Tangent to a Curve. (Don’t write this! ) What if you were asked to find the slope of a curve? Could you do this? Does it make sense? (No, not really,
2.4 Rates of Change and Tangent Lines
Determining Rates of Change from an Equation
§1.5 Rates Of Change, Slope and Derivatives
2.1 The Derivative and the Tangent Line Problem
M 112 Short Course in Calculus Chapter 2 – Rate of Change: The Derivative Sections 2.2 – The Derivative Function V. J. Motto.
1 Discuss with your group. 2.1 Limit definition of the Derivative and Differentiability 2015 Devil’s Tower, Wyoming Greg Kelly, Hanford High School, Richland,
Differentiability and Rates of Change. To be differentiable, a function must be continuous and smooth. Derivatives will fail to exist at: cornercusp vertical.
Implicit Differentiation 3.6. Implicit Differentiation So far, all the equations and functions we looked at were all stated explicitly in terms of one.
The Tangent and Velocity Problem © John Seims (2008)
Section 2.6 Tangents, Velocities and Other Rates of Change AP Calculus September 18, 2009 Berkley High School, D2B2.
2.4 Rates of Change and Tangent Lines Calculus. Finding average rate of change.
Chapter 3.1 Tangents and the Derivative at a Point.
11-2 Key to evens 2a) -5 2b) -3 2c) 0 4a) 0 4b) 1 4c) -2 6) -1/10 8) -5 10) 27 12) - 7/14 14) 1/8 16) 1/16 18) 0 20) 1/4 22) -1/6 24) 4 26) -1/4 28) 1.
12/8/20151 Lesson 30 - Rates of Change IBHL Math & Calculus - Santowski HL Math & Calculus - Santowski.
§3.2 – The Derivative Function October 2, 2015.
2.4 Rates of Change and Tangent Lines Devil’s Tower, Wyoming Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 1993.
Warm Up Determine a) ∞ b) 0 c) ½ d) 3/10 e) – Rates of Change and Tangent Lines.
OBJECTIVES: To introduce the ideas of average and instantaneous rates of change, and show that they are closely related to the slope of a curve at a point.
Rates of Change and Tangent Lines Chapter 2.4. Average Rates of Change 2.
Learning Objectives for Section 10.4 The Derivative
§3.1 – Tangent Lines, Velocity, Rate of Change October 1, 2015.
Rates of Change and Tangent Lines Devil’s Tower, Wyoming Greg Kelly, Richland, WashingtonPhoto by Vickie Kelly, 1993.
Section 2.4 Rates of Change and Tangent Lines Calculus.
2.1 Rates of Change and Tangent Lines Devil’s Tower, Wyoming Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 1993.
Rates of Change and Tangent Lines Devil’s Tower, Wyoming.
1 Copyright © 2015, 2011, and 2008 Pearson Education, Inc. Chapter 2 Limits and the Derivative Section 4 The Derivative.
Ch. 2 – Limits and Continuity 2.4 – Rates of Change and Tangent Lines.
Chapter 14 Sections D - E Devil’s Tower, Wyoming.
2.4 Rates of Change and Tangent Lines
Rates of Change and Tangent Lines
Warm Up a) What is the average rate of change from x = -2 to x = 2? b) What is the average rate of change over the interval [1, 4]? c) Approximate y’(2).
2-4 Rates of change & tangent lines
2.1 Tangents & Velocities.
2.7 and 2.8 Derivatives Great Sand Dunes National Monument, Colorado
Pg 869 #1, 5, 9, 12, 13, 15, 16, 18, 20, 21, 23, 25, 30, 32, 34, 35, 37, 40, Tangent to a Curve.
2.1A Tangent Lines & Derivatives
2.7 Derivatives and Rates of Change
2.4 Rates of Change & Tangent Lines
Sec 2.7: Derivative and Rates of Change
Day 3 UNIT 1 Motion Graphs x t Lyzinski Physics.
Definition of the Derivative
Lesson 2-4: Rates of Change
Rates of Change and Tangent Lines
The Tangent and Velocity Problems
2.1 Limits, Rates of Change, and Tangent Lines
2.4 Rates of Change and Tangent Lines
Tangent Line Recall from geometry
2.4 Rates of Change and Tangent Lines
2.4 The Derivative.
Presentation transcript:

2.4 Rates of Change and Tangent Lines Devil’s Tower, Wyoming

The slope of a line is given by: The slope at (1,1) can be approximated by the slope of the secant through (4,16). We could get a better approximation if we move the point closer to (1,1). ie: (3,9) Even better would be the point (2,4).

The slope of a line is given by: If we got really close to (1,1), say (1.1,1.21), the approximation would get better still How far can we go?

slope slope at The slope of the curve at the point is:

is called the difference quotient of f at a. If you are asked to find the slope using the definition or using the difference quotient, this is the technique you will use.

In the previous example, the tangent line could be found using. The slope of a curve at a point is the same as the slope of the tangent line at that point. If you want the normal line, use the negative reciprocal of the slope. (in this case, ) (The normal line is perpendicular.)

Example 4: a Find the slope at. Let On the TI-89: limit ((1/(a + h) – 1/ a) / h, h, 0) F3Calc Note: If it says “Find the limit” on a test, you must show your work!

Example 4: b Where is the slope ? Let On the TI-83: Y= y = 1 / x WINDOW GRAPH

Example 4: b Where is the slope ? Let On the TI-89: Y= y = 1 / x WINDOW GRAPH We can let the calculator plot the tangent: Draw 5: Tangent ENTER 2 Repeat for x = -2 tangent equation

Find the slope of the tangent line at x = 2 to the curve y = 2x 2 +4x -1. Slope = = = = = 12

Find the slope of the tangent line at x = 2 to the curve y = 2x 2 +4x -1. Solution #2 Slope = = = = = 12 To find the equation of the tangent line on the TI 83: CALC dy/dx (enter desired x-value). DRAW Tangent (gives the equation!

Review: average slope: slope at a point: average velocity: instantaneous velocity: If is the position function: These are often mixed up by Calculus students! So are these! 