Kondo effect in a quantum dot without spin Hyun-Woo Lee (Postech) & Sejoong Kim (Postech  MIT) References: H.-W. Lee & S. Kim, cond-mat/0610496 P. Silvestrov.

Slides:



Advertisements
Similar presentations
Equations-of-motion technique applied to quantum dot models
Advertisements

Nanostructures on ultra-clean two-dimensional electron gases T. Ihn, C. Rössler, S. Baer, K. Ensslin C. Reichl and W. Wegscheider.
From weak to strong correlation: A new renormalization group approach to strongly correlated Fermi liquids Alex Hewson, Khan Edwards, Daniel Crow, Imperial.
Spectral functions in NRG Rok Žitko Institute Jožef Stefan Ljubljana, Slovenia.
- Mallorca - Spain Quantum Engineering of States and Devices: Theory and Experiments Obergurgl, Austria 2010 The two impurity.
Correlations in quantum dots: How far can analytics go? ♥ Slava Kashcheyevs Amnon Aharony Ora Entin-Wohlman Phys.Rev.B 73, (2006) PhD seminar on.
Dynamical response of nanoconductors: the example of the quantum RC circuit Christophe Mora Collaboration with Audrey Cottet, Takis Kontos, Michele Filippone,
QUANTUM TRANSPORT IN THE TUNNELING AND COTUNNELING REGIMENS Javier F. Nossa M.
Igor Aleiner (Columbia) Theory of Quantum Dots as Zero-dimensional Metallic Systems Physics of the Microworld Conference, Oct. 16 (2004) Collaborators:
Markus Büttiker University of Geneva The Capri Spring School on Transport in Nanostructures April 3-7, 2006 Scattering Theory of Conductance and Shot Noise.
Single electron Transport in diluted magnetic semiconductor quantum dots Department of Applied Physics, U. Alicante SPAIN Material Science Institute of.
Electronic Transport and Quantum Phase Transitions of Quantum Dots in Kondo Regime Chung-Hou Chung 1. Institut für Theorie der Kondensierten Materie Universität.
Silvano De Franceschi Laboratorio Nazionale TASC INFM-CNR, Trieste, Italy Orbital Kondo effect in carbon nanotube quantum dots
Chaos and interactions in nano-size metallic grains: the competition between superconductivity and ferromagnetism Yoram Alhassid (Yale) Introduction Universal.
The Coulomb Blockade in Quantum Boxes Avraham Schiller Racah Institute of Physics Eran Lebanon (Hebrew University) Frithjof B. Anders (Bremen University)
Quantum charge fluctuation in a superconducting grain Manuel Houzet SPSMS, CEA Grenoble In collaboration with L. Glazman (University of Minnesota) D. Pesin.
Electronic Transport and Quantum Phase Transitions of Quantum Dots in Kondo Regime Chung-Hou Chung 1. Institut für Theorie der Kondensierten Materie Universität.
The noise spectra of mesoscopic structures Eitan Rothstein With Amnon Aharony and Ora Entin Condensed matter seminar, BGU.
Solid state realisation of Werner quantum states via Kondo spins Ross McKenzie Sam Young Cho Reference: S.Y. Cho and R.H.M, Phys. Rev. A 73, (2006)
14. April 2003 Quantum Mechanics on the Large Scale Banff, Alberta 1 Relaxation and Decoherence in Quantum Impurity Models: From Weak to Strong Tunneling.
Coulomb Blockade and Non-Fermi-Liquid Behavior in a Double-Dot Device Avraham Schiller Racah Institute of Physics Eran Lebanon (Rutgers University) Special.
Introduction to the Kondo Effect in Mesoscopic Systems.
Quantum Dots – Past, Present and Open Questions Yigal Meir Department of Physics & The Ilse Katz Center for Meso- and Nano-scale Science and Technology.
Axel Freyn, Ioannis Kleftogiannis and Jean-Louis Pichard
Theory of the Quantum Mirage*
Non equilibrium noise as a probe of the Kondo effect in mesoscopic wires Eran Lebanon Rutgers University with Piers Coleman arXiv: cond-mat/ DOE.
Exotic Kondo Effects and T K Enhancement in Mesoscopic Systems.
Capri spring school, April 2009 With collaborators: P. Mehta - Princeton C. Bolech - Rice A. Jerez - NJIT, Rutgers G. Palacios - Rutgers N. Andrei - Rutgers.
Avraham Schiller / Seattle 09 equilibrium: Real-time dynamics Avraham Schiller Quantum impurity systems out of Racah Institute of Physics, The Hebrew University.
A. Ramšak* J. Mravlje T. Rejec* R. Žitko J. Bonča* The Kondo effect in multiple quantum dot systems and deformable molecules
Kondo, Fano and Dicke effects in side quantum dots Pedro Orellana UCN-Antofagasta.
From Kondo and Spin Glasses to Heavy Fermions, Hidden Order and Quantum Phase Transitions A Series of Ten Lectures at XVI Training Course on Strongly Correlated.
Non-equilibrium transport of a quantum dot in the Kondo regime near quantum phase transitions Chung-Hou Chung 仲崇厚 Electrophysics Dept. National Chiao-Tung.
Correlations in quantum dots: How far can analytics go?
Magnetopolaronic effects in single-molecule transistor
Electron coherence in the presence of magnetic impurities
The Two Channel Kondo Effect (The breakdown of the Fermi liquid paradigm in quantum dots: theory and experiment) Department of Condensed Matter Physics.
Radiation induced photocurrent and quantum interference in n-p junctions. M.V. Fistul, S.V. Syzranov, A.M. Kadigrobov, K.B. Efetov.
Vyacheslavs (Slava) Kashcheyevs Collaboration: Christoph Karrasch, Volker Meden (RTWH Aachen U., Germany) Theresa Hecht, Andreas Weichselbaum (LMU Munich,
Chung-Hou Chung Collaborators:
T. K. T. Nguyen, M. N. Kiselev, and V. E. Kravtsov The Abdus Salam ICTP, Trieste, Italy Effect of magnetic field on thermoelectric coefficients of a single.
Supercurrent through carbon-nanotube-based quantum dots Tomáš Novotný Department of Condensed Matter Physics, MFF UK In collaboration with: K. Flensberg,
Electronic States and Transport in Quantum dot Ryosuke Yoshii YITP Hayakawa Laboratory.
L4 ECE-ENGR 4243/ FJain 1 Derivation of current-voltage relation in 1-D wires/nanotubes (pp A) Ballistic, quasi-ballistic transport—elastic.
Quantum pumping and rectification effects in interacting quantum dots Francesco Romeo In collaboration with : Dr Roberta Citro Prof. Maria Marinaro University.
Population Switching and Charge Sensing in Quantum Dots: A case for Quantum Phase Transitions Moshe Goldstein (Bar-Ilan Univ., Israel), Richard Berkovits.
Adiabatic quantum pumping in nanoscale electronic devices Adiabatic quantum pumping in nanoscale electronic devices Huan-Qiang Zhou, Sam Young Cho, Urban.
The Helical Luttinger Liquid and the Edge of Quantum Spin Hall Systems
Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Exp : J. Basset, A.Yu. Kasumov, H. Bouchiat and R. Deblock Laboratoire de Physique des.
Theoretical study of the phase evolution in a quantum dot in the presence of Kondo correlations Mireille LAVAGNA Work done in collaboration with A. JEREZ.
Www-f1.ijs.si/~bonca/work.html Cambridge, 2006 J. Bonča Physics Department, FMF, University of Ljubljana, J. Stefan Institute, Ljubljana, SLOVENIA Conductance.
Single Electron Transistor (SET)
Singlet-Triplet and Doublet-Doublet Kondo Effect
Progress Report: Tools for Quantum Information Processing in Microelectronics ARO MURI (Rochester-Stanford-Harvard-Rutgers) Third Year Review, Harvard.
Www-f1.ijs.si/~bonca/work.html New 3 SC-6, Sydney, 2007 J. Bonča Physics Department, FMF, University of Ljubljana, J. Stefan Institute, Ljubljana, SLOVENIA.
Coupling quantum dots to leads:Universality and QPT
Charge pumping in mesoscopic systems coupled to a superconducting lead
THE KONDO EFFECT IN CARBON NANOTUBES
Slava Kashcheyevs Avraham Schiller Amnon Aharony Ora Entin-Wohlman Interference and correlations in two-level dots Phys. Rev. B 75, (2007) Also:
Electronic transport in one-dimensional wires Akira Furusaki (RIKEN)
Resistance Minimum in Dilute Magnetic Alloys Ref)Jun Kondo Resistance Minimum in Dilute Magnetic Alloys Prog. Theor. Phys.32(1964)37-49 Osaka Univ. Miyake.
Transport Measurement of Andreev Bound States in a Kondo-Correlated Quantum Dot Experiment: B.-K. Kim, Y.-H. Ahn, J.-J. Kim, M.-H. Bae, N. Kim Theory:
NTNU, April 2013 with collaborators: Salman A. Silotri (NCTU), Chung-Hou Chung (NCTU, NCTS) Sung Po Chao Helical edge states transport through a quantum.
Charge-Density-Wave nanowires Erwin Slot Mark Holst Herre van der Zant Sergei Zaitsev-Zotov Sergei Artemenko Robert Thorne Molecular Electronics and Devices.
Kondo Effect Ljubljana, Author: Lara Ulčakar
Tunable excitons in gated graphene systems
Quantum entanglement, Kondo effect, and electronic transport in
Robert Konik, Brookhaven National Laboratory Hubert Saleur,
Kondo effect Him Hoang
Low energy approach for the SU(N) Kondo model
Presentation transcript:

Kondo effect in a quantum dot without spin Hyun-Woo Lee (Postech) & Sejoong Kim (Postech  MIT) References: H.-W. Lee & S. Kim, cond-mat/ P. Silvestrov & Y. Imry, cond-mat/ V. Kashcheyevs, A. Schiller, A. Aharony, & O. Entin-Wohlman, cond-mat/

Kondo effect  Temperature dependence of resistance  Resistance minimum

Kondo effect (continued) [J. Kondo, Prog. Theor. Phys. ’64]  Scattering by magnetic impurities Before After s - d model

Scattering amplitude for a channel of where N : number of d-electrons, N(0) : density of state at E F D : width of conduction electron distribution around E F This lnT dependence combined with the phonon contribution ( T 5 dependence) makes a resistance minimum in R(T). LogT dependence in R(T) J k,q = J where –D <  k,  q < D = 0 otherwise (*) 엄종화

Kondo effect (continued)  High T vs. low T Kondo singlet Cf. Asymptotic freedom

T K ~ T 일 때, Hamann expression (Phys. Rev. 1967) For T K > T, take (-) in the equation T K < T, take (+) in the equation T K << T 일 때, When T << T K,  ~  0 - cT 2 : unitary limit Kondo effect (*) 엄종화

Kondo effect in AuFe(26ppm) wire Hamann expression (Phys. Rev. 1967) From fitting the Hamann expression to  (T), we obtain S = 0.12, T K = 0.99 K. Concentration of AuFe is estimated by the slope of  => 26 ppm in the above figure Slope of Kondo resistivity = 0.11 n  cm / (ppm decade K) (*) 엄종화

Kondo effect in quantum dot

Quantum dot (QD)  “Metallic” limit ~ e 2 /2C >> kT n VgVg

Transport through a QD  Orthodox theory of Coulomb blockade Transport due to charge fluctuations Transport due to charge fluctuations

Quantum confinement  Single particle energy quantization  E >> kT

Even-odd effect  Spin singlet (S=0) vs doublet (S=1/2)  QD with odd n = magnetic impurity ??? n VgVg /2 0 S=1/2

Kondo effect in QD ?  Hamiltonian  Spin flip via second order processes c.f. n VgVg Before After

Kondo effect in QD w/ odd n  Theories T. K. Ng and P. A. Lee T. K. Ng and P. A. Lee Phys. Rev. Lett. 61, 1768 (1988)Phys. Rev. Lett. 61, 1768 (1988) L. I. Glazman and M. E. Raikh L. I. Glazman and M. E. Raikh JETP Lett. 47, 452 (1988)JETP Lett. 47, 452 (1988)  Experiments D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abush-Magder, U. Meirav, and M. A. Kaster D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abush-Magder, U. Meirav, and M. A. Kaster Nature 391, 156 (1998); Phys. Rev. Lett. 81, 5225 (1998)Nature 391, 156 (1998); Phys. Rev. Lett. 81, 5225 (1998) S. M. Cronenwett, T. H. Oostercamp, and L. P. Kouwenhoven S. M. Cronenwett, T. H. Oostercamp, and L. P. Kouwenhoven Science 281, 540 (1998)Science 281, 540 (1998)  Kondo suppression of  Kondo suppression of R

Unitary limit of the Kondo effect in SET [W. G. van der Wiel et al., Science ’00] G at V gl = -413mV shows logarithmic T dependence (inset), and saturates below 90mK (unitary limit) This experiment shows a unitary limit = 2 e 2 / h (  R =  L 의 경우 ) V gl was fixed at -413mV. V SD was biased between S and D. Kondo resonance peak G(T)G(T) 온도대역 : 15 mK – 800 mK FWHM (*) 엄종화

Kondo temperature: T K ; Costi et al., J. Phys.: Condense. Matter 6, 2519 (1994) In Anderson model, An empirical function ; Goldhaber-Gordon et al., PRL 81, 5225 (1998) T K in Log scale : universal functional form of T / T K s is a fit parameter, but is almost constant ~0.2 in the Kondo regime. (*) 엄종화

Kondo effect in QD w/o spin?

Beyond orthodox theory  Anomalous transmission phase Yacoby et al., PRL 74, 4047 (1995); Schuster et al., Nature 385, 417 (1997); Avinun-Khalish et al., Nature 436, 529 (2005) Yacoby et al., PRL 74, 4047 (1995); Schuster et al., Nature 385, 417 (1997); Avinun-Khalish et al., Nature 436, 529 (2005) Bruder et al., PRL 76, 114 (1995); Lee, PRL 82, 2358 (1999); Silvestrov et al., PRL 85, 2565 (2000) Bruder et al., PRL 76, 114 (1995); Lee, PRL 82, 2358 (1999); Silvestrov et al., PRL 85, 2565 (2000)  Population switching Silvestrov et al., PRL 85, 2565 (2000); Konig et al., PRB 71, R (2005); Sindel et al., PRB 72, (2005) Silvestrov et al., PRL 85, 2565 (2000); Konig et al., PRB 71, R (2005); Sindel et al., PRB 72, (2005)  Correlation-induced resonace Meden et al., PRL 96, (2006); PRB 73, (2006) Meden et al., PRL 96, (2006); PRB 73, (2006)

Two level QD  QD w/ two single-particle level  Source & Drain  Tunneling  “Spin” ? t1Lt1L t1Rt1R t2Lt2L t1Rt1R tt

Pseudospin for  1 = 2 (= )  Unitary transformations Pseudospin Pseudospin up Pseudospin down

Schrieffer-Wolf transformation: QD system (Anderson model)  s - d model  Fock space decomposition  Full Hamiltonian  Projection to n =1 Fock space 012

Effective Hamiltonian H s-d  Total Hamiltonian Anisotropic antiferro-exchange Anisotropic antiferro-exchange U(1) instead of SU(2)U(1) instead of SU(2) Pseudomagnetic field B z eff Pseudomagnetic field B z eff (*) For  =  (*) For  =  SU(2): J z =J + =J -SU(2): J z =J + =J - B z eff =0B z eff =0

Pseudomagnetic field B z eff  Expectation value For   >   For   >    Population switching from  level to  level with decreasing   Population switching from  level to  level with decreasing  0-U/2  =+U/2 012 hzhz

Population switching (PS) [Silvestrov & Imry, PRL’00]  Energy renormalization  eff =  bare +  (hopping)  eff =  bare +  (hopping)  : gate voltage dependent  : gate voltage dependent Charge 1  0 U U Charge 1  2 0-U/2  =+U/2 012

Poor man’s scaling  [1] Fock space decomposition  [2] Full Hamiltonian  [3] Projection to “g” sector of Fock space New Hamiltonian w/ reduced D New Hamiltonian w/ reduced D  [4] Back to [1] D DD DD

Scaling equations  Exchange J ’s Scaling invariant Scaling invariant Integration: Characteristic energy scale (Kondo temperature) Integration: Characteristic energy scale (Kondo temperature)  Pseudomagnetic field B z eff Integration: Integration:

Anisotropic s - d model  Approximation   Anisotropic s - d model Exact solution (via Bethe ansatz) available !!! Exact solution (via Bethe ansatz) available !!! Tsvelick & Wiegmann, Adv. Phys. 32, 453 (1983)Tsvelick & Wiegmann, Adv. Phys. 32, 453 (1983)

Conductance at T=0   and  scattering states  Friedel sum rule  Landauer-Buttiker formula

Anisotropic s - d model [Tsvelick and Wiegmann, Adv. Phys. (1983)]   S z  =(  n   -  n   )/2 vs. h z  G vs. 

Cf. Conventional spin Kondo  Conventional spin Kondo  Kondo w/o spin Correlation-induced resonance Correlation-induced resonance [Meden & Marquardt, PRL 96, (2006)] 0-U/2  =+U/2 012

w/o degeneracy  1 - 2  0  Same Unitary transformation  Additional pseudomagnetic field  h Parallel to z Parallel to z Shift of CIRsShift of CIRs Perpendicular to z Perpendicular to z Asymmetry in CIRs (Fano-like)Asymmetry in CIRs (Fano-like)

Summary  Kondo effect in QD w/o spin Distinct conductance pattern (cf. spin Kondo in QD) Distinct conductance pattern (cf. spin Kondo in QD)  Future directions w/o degeneracy w/o degeneracy Temperature dependence Temperature dependence Pseudospin & real spin Pseudospin & real spin Real Spin [SU(2)]Real Spin [SU(2)] Pseudospin [Not SU(2) invariant]Pseudospin [Not SU(2) invariant] Connection w/ anomalous transmission phase problem ?Connection w/ anomalous transmission phase problem ?