Post-LH Diagnostic Line for LCLS-II P. Emma, M. Woodley, Y. Nosochkov, Feb. 26, 2014 Steal beam at 1-100 Hz with y -kicker after LH (  y = 15 mm) Bend.

Slides:



Advertisements
Similar presentations
Nominal and no CSR (R 56-1 = 55 mm, R 56-2 = 59 mm, R 56-3 = 0) L1 phase = 21 deg, V 3.9 = 55 MV CSR OFF BC3 OFF Elegant Tracking  z1 = mm (post.
Advertisements

BC System – Review Options ● BC2 working point (energy-charge-compr.) ● 2BC (rf-rf-bc-rf-bc-rf) ● table: 2BC (rf-rf-bc-rf-bc-rf) dogleg + 2BC (rf-dog-rf-rf-bc-rf-bc-rf)
Update of RTML, Status of FNAL L-band and CLIC X-band BPM, Split SC Quadrupole Nikolay Solyak Fermilab (On behalf of RTML team) LCWS2010 / ILC 10, March.
Velocity bunching SPARC Daniele Filippetto on behalf of SPARC team.
Christopher Gerth, Michael Röhrs, Holger Schlarb DESY Hamburg Optics for Diagnostic Section BC1 in the European XFEL.
Commissioning August & September. 2 Agenda 11:20 Coffee 11:30 Introduction Sue S 11:35 Controls (an overview) Brian M 10:55 Controls & Data Acquisition.
Paul Emma LCLS FAC April 16, Initial Experience with Injector Commissioning P. Emma, et al. Facilities Advisory Committee.
P. Emma, SLACLCLS Commissioning – Sep. 22, 2004 Linac Commissioning P. Emma LCLS Commissioning Workshop, SLAC Sep , 2004 LCLS.
P. Emma, SLACLCLS FAC Meeting - April 29, 2004 Linac Physics, Diagnostics, and Commissioning Strategy P. Emma LCLS FAC Meeting April 29, 2004 LCLS.
Paul Emma LCLS Commissioning Status Nov. 11, 2008 SLAC National Accelerator Laboratory 1 LCLS Commissioning Status P. Emma for The.
C.Limborg-Deprey Beam Dynamics Justifying L01 November 3 rd 2004 Beam Dynamics Justifications of modification of.
E. Bong, SLACLCLS FAC Meeting - April 29, 2004 Linac Overview E. Bong LCLS FAC Meeting April 29, 2004 LCLS.
Cecile Limborg-Deprey Injector Commissioning September Injector Commissioning Plans C.Limborg-Deprey Gun exit measurements.
P. Emma, SLACICFA XFEL July 29, 2004 Electron Bunch Measurements with a Transverse RF Deflector P. Emma ICFA XFEL 2004 Workshop July 29, 2004 ICFA.
Cecile Limborg-Deprey Injector October Injector Physics C.Limborg-Deprey Diagnostics and Commissioning GTL measurements.
LCLS-II Transverse Tolerances Tor Raubenheimer May 29, 2013.
3 GeV,1.2 MW, Booster for Proton Driver G H Rees, RAL.
October 31, BDS Group1 ILC Beam Delivery System “Hybrid” Layout 2006e Release Preliminary M. Woodley.
Low Emittance RF Gun Developments for PAL-XFEL
The Overview of the ILC RTML Bunch Compressor Design Sergei Seletskiy LCWS 13 November, 2012.
LCLS-II Magnet Error Sensitivities. Sensitivities of dipole magnets, from injector output (95 MeV) to SXR undulator input (4 GeV), where each plotted.
XFEL BC Review Meeting, 18/12/2006, Christopher Gerth Christopher Gerth, Michael Röhrs, Holger Schlarb DESY Hamburg Optics Layout of the Diagnostic Sections.
LCLS Accelerator SLAC linac tunnel research yard Linac-0 L =6 m Linac-1 L  9 m  rf   25° Linac-2 L  330 m  rf   41° Linac-3 L  550 m  rf  0°
Paul Emma, et. al. Sep. 18, 2013 Paul Emma, et. al. Sep. 18, 2013 Design Considerations for the NGLS (Next Generation Light Source) NGLS.
S2E optics design and particles tracking for the ILC undulator based e+ source Feng Zhou SLAC ILC e+ source meeting, Beijing, Jan. 31 – Feb. 2, 2007.
A bunch compressor design and several X-band FELs Yipeng Sun, ARD/SLAC , LCLS-II meeting.
EMMA Extraction / Diagnostic line Bruno Muratori STFC, Daresbury Laboratory 01/09/08.
Bruno Muratori (for the EMMA team) STFC, Daresbury Laboratory EMMA commissioning 02/09/08.
1 Alternative ILC Bunch Compressor 7 th Nov KNU (Kyungpook National Univ.) Eun-San Kim.
1 Alternative Bunch Compressor 30 th Sep KNU Eun-San Kim.
Kiyoshi Kubo Electron beam in undulators of e+ source - Emittance and orbit angle with quad misalignment and corrections - Effect of beam pipe.
Beam Stay-Clear (BSC) Apertures in LCLS-II June 24, 2015 P. Emma Take up work Jim Welch started (LCLSII-TN-14-15, Jan. 23, 2015) Goal is to define stay-clear.
W.S. Graves 2002 Berlin CSR workshop 1 Microbunching and CSR experiments at BNL’s Source Development Lab William S. Graves ICFA CSR Workshop Berlin, Jan.,
P. Krejcik LINAC 2004 – Lübeck, August 16-20, 2004 LCLS - Accelerator System Overview Patrick Krejcik on behalf of the LCLS.
‘S2E’ Study of Linac for TESLA XFEL P. Emma SLAC  Tracking  Comparison to LCLS  Re-optimization  Tolerances  Jitter  CSR Effects.
Status of RTML design in TDR configuration A.Vivoli, N. Solyak, V. Kapin Fermilab.
P I T Z Photo Injector Test Facility Zeuthen Design consideration of the RF deflector to optimize the photo injector at PITZ S.Korepanov.
The Introduction to CSNS Accelerators Oct. 5, 2010 Sheng Wang AP group, Accelerator Centre,IHEP, CAS.
LCLS-II Particle Tracking: Gun to Undulator P. Emma Jan. 12, 2011.
Preliminary Tracking Results through LCLS-II P. Emma et al., Oct. 23, 2013 Thanks to Mark Woodley and Yuri Nosochkov for MAD design work Use Christos Papadopoulos.
X-band Based FEL proposal
Wir schaffen Wissen – heute für morgen PSI, March 2013 Paul Scherrer Institut PSI / DESY / KIT Mini-Workshop on Longitudinal Diagnostics for FELs.
Microbunching Instability and Slice Energy Spread
LCLS-II will use sectors (2 nd kilometer of SLAC linac) + a bypass line FACET has already removed all RF from sector 20 LCLS-II will re-install RF.
PAL-XFEL Commissioning Plan ver. 1.1, August 2015 PAL-XFEL Beam Dynamics Group.
A single-shot method for measuring fs bunches in linac-based FELs Z. Huang, K. Bane, Y. Ding, P. Emma.
Applications of transverse deflecting cavities in x-ray free-electron lasers Yuantao Ding SLAC National Accelerator Laboratory7/18/2012.
Status of the MAX IV Short Pulse Facility
Sara Thorin, MAX IV Laboratory
LCLS2sc MAD files: Injector to Bypass Line
Slice Parameter Measurements at the SwissFEL Injector Test Facility
Short pulse, low charge LCLS operation
LCLS-II Lattice 26FEB16: updates in the areas from bypass to dump
6D Characterization of Witness Beam before Injection in LWFA
Beam-Based Feedback in LCLS-II
Thermal emittance measurement Gun Spectrometer
Progress activities in short bunch compressors
Time-Resolved Images of Coherent Synchrotron Radiation Effects
Injector Commissioning C
Linac/BC1 Commissioning P
LCLS-II β-Matching Study
LCLS Linac Overview E. Bong Lehman Review August 10, 2004
LCLS Commissioning P. Emma, et al
Modified Beam Parameter Range
Injector Experimental Results John Schmerge, SSRL/SLAC April 24, 2002
Linac Physics, Diagnostics, and Commissioning Strategy P
Diagnostics overview Beam profile monitors Cherenkov radiators Summary
Linac Design Update P. Emma LCLS DOE Review May 11, 2005 LCLS.
Electron Optics & Bunch Compression
Injector Physics C.Limborg-Deprey Feb.8th 2006
Presentation transcript:

Post-LH Diagnostic Line for LCLS-II P. Emma, M. Woodley, Y. Nosochkov, Feb. 26, 2014 Steal beam at Hz with y -kicker after LH (  y = 15 mm) Bend hor. 0.7 m with septum magnet and keep parallel to wall Suppress septum dispersion and add screen at x & y beam waist for easy emittance measurements (quad-scan or multi-screen) Final spectrometer (bend up) with screen and 3-W dump Hor. RF deflector provides time resolved y -emittance meas. Ver. RF deflector provides time resolved x -emittance (future) RF deflectors also provide absolute bunch length measurements Spectrometer to measure projected and sliced energy spread Panofsky-Wenzel energy spread needs to be <<5 keV CSR should not distort beam (easy in LH with long bunch) Chromatic effects need to be small (easy in LH, hard in BC1) Keep diagnostics beamline < 20 m (?)

e  dump (~3 W) RF deflectors screen mrad 0.8 m 0.70 m 6.0  y x z 6.7 m XDFXDF YDFYDF z (plan view) (elevation view) HLAM KICKER HBND 2.0 m wall 10.1 m m 20  12 mm 0.8 m 0.5 m 1.74 m 0.5 m screen-1 future Post-Laser-Heater Diagnostics Line Schematic (only very roughly to scale) 20.8 m  y = -6.3 mm to suppress  y Rolled by 9.65  to suppress  y 100 Hz  y = mm to suppress  y

Kicker – reduce inductance using several sections, each with a pulser Kicker core (left) and full magnet (right), with 10 sections shown. Each core is driven by a separate pulser, but for clarity only one is shown here. pulser (10-MHz capability?) Tony Beukers magnet one core

OTR2 TCAVY TCAVX  y = 540 mm spectrometer x-dogleg y-kicker x-septum 3 OTRs (120  ) Post-Laser-Heater Diagnostics Line Thanks M. Woodley & Y. Nosochkov

Floor Coordinates 21.5 cm clearance (center-to-center) 66

Resolution Requirements Resolve rms beam sizes of order ~30  m to < 5% Deflectors should slice 1-mm bunch length into at least 10 bins (300 fs) Must resolve  ½ of 5-keV heater energy spread (i.e., 2.5×10  5 ) Panofsky-Wenzel effect in TCAVX should be  ¼ of 5-keV Use short (< 1 m) S-band RF deflector(s) – X-band not needed here  x,y = 0.45  m  E = 5 keV  z = 1.0 mm E = 100 MeV Q = 100 pC  x,y = 0.45  m  E = 5 keV  z = 1.0 mm E = 100 MeV Q = 100 pC

2 TCAV’s OFF 37  m SCREEN-1 (OTRB) OTRB TCAVY TCAVX (  y  110  m) 377  m 37  m TCAVY ON (0.5 MV) future SCREEN-1 (OTRB) zz slice-  x proj-  x proj-  y 400  m slice-  y 37  m TCAVX ON (0.5 MV) SCREEN-1 (OTRB) zz

2 TCAVs OFF SCREEN-2 (OTR2) 34  m 118  m OTR2 TCAVY TCAVX  y = 540 mm spectr. TCAVX ON (0.2 MV) HEATER OFF (    ) SCREEN-2 (OTR2) 21  m 523  m 1.0 keV PW  y   21  m  TCAVX ON (0.2 MV) HEATER OFF (    5 keV ) SCREEN-2 (OTR2) 34  m 523  m  5.0 keV LH CSR causes no issues  5.0 keV LH

2 TCAVs OFF SCREEN-2 (OTR2)  5.0 keV LH TCAVX ON (0.2 MV) HEATER OFF (    5 keV ) SCREEN-2 (OTR2) 523  m 1.0 keV PW TCAVX ON (0.2 MV) HEATER OFF (    ) SCREEN-2 (OTR2) 523  m  119  m 1.0 keV PW  x = 110  m V = 0.2 MV f = 2856 MHz TCAVX ON 269  m

  m  (26  m)/  y = 4.8×10  5   m  (38  m)/  y = 7.0×10  5  y = 540 mm  y = 20   y = 540 mm  y = 20    = 1.0×10  5 (PW)   = 5.0×10  5 (LH)  y = 810 mm  y = 30   y = 810 mm  y = 30    = 1.0×10  5 (PW)   = 5.0×10  5 (LH)   m  (32  m)/  y = 4.0×10  5   m  (52  m)/  y = 6.4×10  5  y  y ) 1/2 = 20  m 38  m 26  m 52  m 32  m

 y = 810 mm  y = 30   y = 810 mm  y = 30    = 1.0×10  5 (PW)   = 5.0×10  5 (LH)   m  (16  m)/  y = 2.0×10  5   m  (45  m)/  y = 5.6×10  5  y  y ) 1/2 = 12  m Spectrometer at Low Charge (Q = 10 pC,  y =  x = 0.15  m)   45  m 16  m

Chromatic Errors 0.05% rms energy spread (nominal) 0.20% rms energy spread (worst?)

Post-Laser-Heater Energy Spread at 95 MeV is 0.05% rms

No CSR Effects (100 pC, 1 mm bunch length) (0.05% rms energy spread) Linear energy-position correlations (dispersion) removed 5×10  5  y = 30  6×10  5

ParametersymbolvalueUnit Kicker lengthLkLk 0.5m Kicker fieldBkBk T Kicker field regulation (7% jitter)  B k /B k  rms 0.01% Vert. e  pos. at face of septum yy 15mm Septum bend angle xx 6.0deg Septum fieldBsBs 0.043T Septum lengthLsLs 0.8m Septum roll angle ss 9.65deg Beam line hor. offset (wrt linac) xx 0.7m TCAVX (and TCAY) lengthsL xc,yc 0.8m Max. crest TCAV voltage (S-band)V x,y 0.5MV Spectrometer bend lengthLyLy 0.5m Spectrometer bend fieldByBy 0.23T Spectrometer bend angle yy 20 (30?)deg Quadrupole lengthsLQLQ 0.1m Quadrupole pole-tip radiusrprp 16mm Max. quadrupole pole-tip fieldBpBp 0.12T Beamline Parameters

9-page PRD ready

L yy Quad focal length: Chromatic aberration: Chromatic Limitation on Dog-Leg Length Dog-Leg length:  = 20 m,   = 0.2%,  /  0  1%, L ≥ 2.3 m  = 20 m,   = 2.0%,  /  0  1%, L ≥ 23 m Laser Heater: BC1: