Wednesday, July 7, 2004PHYS 1441-501, Summer 2004 Dr. Jaehoon Yu 1 PHYS 1441 – Section 501 Lecture #11 Wednesday, July 7, 2004 Dr. Jaehoon Yu Collisions.

Slides:



Advertisements
Similar presentations
PHYS 1441 – Section 002 Lecture #18 Wednesday, April 3, 2013 Dr. Jaehoon Yu Collisions Elastic Collisions Perfectly Inelastic Collisions Concept of the.
Advertisements

Physics 218: Mechanics Instructor: Dr. Tatiana Erukhimova Lecture 27.
7-6 Inelastic Collisions
Copyright © 2009 Pearson Education, Inc. PHY093 Lecture 2d Linear Momentum, Impulse and Collision 1.
Thursday, Oct. 23, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 1 PHYS 1443 – Section 004 Lecture #17 Thursday, Oct. 23, 2014 Dr. Jaehoon Yu Torque & Vector.
PHYS 1443 – Section 001 Lecture #16 Monday, April 11, 2011 Dr. Jaehoon Yu Collisions – Elastic and Inelastic Collisions Collisions in two dimension Center.
Monday, Apr. 7, 2008 PHYS , Spring 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #19 Monday, Apr. 7, 2008 Dr. Jaehoon Yu Linear Momentum.
Monday, June 30, 2014PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #14 Monday, June 30, 2014 Dr. Jaehoon Yu Linear Momentum.
PHYS 1441 – Section 002 Lecture #22 Monday, April 22, 2013 Dr. Jaehoon Yu Work, Power and Energy in Rotation Angular Momentum Angular Momentum Conservation.
Tuesday, June 28, 2011PHYS , Summer 2011 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #13 Tuesday, June 28, 2011 Dr. Jaehoon Yu Collisions.
Monday, June 25, 2007PHYS , Summer 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #14 Monday, June 25, 2007 Dr. Jaehoon Yu Torque Vector.
Thursday, June 21, 2007PHYS , Summer 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #13 Thursday, June 21, 2007 Dr. Jaehoon Yu Fundamentals.
Wednesday, Oct. 23, 2002PHYS , Fall 2002 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #12 Monday, Oct. 23, 2002 Dr. Jaehoon Yu 1.Rocket Propulsion.
Monday, Nov. 19, 2007 PHYS , Fall 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #21 Monday, Nov. 19, 2007 Dr. Jae Yu Work, Power and Energy.
PHYS 1441 – Section 002 Lecture #21 Monday, April 15, 2013 Dr. Jaehoon Yu Moment of Inertia Torque and Angular Acceleration Rotational Kinetic Energy Today’s.
Monday, Oct. 27, 2003PHYS , Fall 2003 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #16 Monday, Oct. 27, 2002 Dr. Jaehoon Yu 1.Center of Mass.
Tuesday, Oct. 14, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 1 PHYS 1443 – Section 004 Lecture #15 Tuesday, Oct. 14, 2014 Dr. Jaehoon Yu Collisions and.
Tuesday, July 1, 2014PHYS , Summer 2014 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #15 Tuesday, July 1, 2014 Dr. Jaehoon Yu Concept of the.
PHYS 1441 – Section 002 Lecture #8 Monday, Feb. 11, 2013 Dr. Jaehoon Yu Maximum Range and Height What is the Force? Newton’s Second Law Free Body Diagram.
Wednesday, Sept. 15, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 1 1.Motion in two dimension Maximum ranges and heights –Reference Frames and relative.
Chapter 9 - Collisions Momentum and force Conservation of momentum
Monday, June 27, 2011PHYS , Spring 2011 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #12 Monday, June 27, 2011 Dr. Jaehoon Yu Linear Momentum.
Wednesday, Apr. 15, 2009PHYS , Spring 2009 Dr. Jaehoon Yu PHYS 1441 – Section 002 Lecture #19 Wednesday, Apr. 15, 2009 Dr. Jaehoon Yu Relationship.
Wednesday, Mar. 24, 2004PHYS , Spring 2004 Dr. Jaehoon Yu 1 PHYS 1441 – Section 004 Lecture #15 Wednesday, Mar. 24, 2004 Dr. Jaehoon Yu Center.
Spring 2002 Lecture #13 Dr. Jaehoon Yu 1.Rotational Energy 2.Computation of Moments of Inertia 3.Parallel-axis Theorem 4.Torque & Angular Acceleration.
Tuesday, June 19, 2007PHYS , Summer 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #11 Tuesday, June 19, 2007 Dr. Jaehoon Yu Conservation.
Wednesday, Apr. 8, 2009PHYS , Spring 2009 Dr. Jaehoon Yu PHYS 1441 – Section 002 Lecture #17 Wednesday, Apr. 8, 2009 Dr. Jaehoon Yu Linear Momentum.
Monday, Feb. 16, 2004PHYS , Spring 2004 Dr. Jaehoon Yu 1 PHYS 1441 – Section 004 Lecture #8 Monday, Feb. 16, 2004 Dr. Jaehoon Yu Chapter four:
Wednesday, Oct. 22, 2003PHYS , Fall 2003 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #15 Wednesday, Oct. 22, 2002 Dr. Jaehoon Yu 1.Impulse.
Monday, Nov. 5, 2007 PHYS , Fall 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #17 Monday, Nov. 5, 2007 Dr. Jae Yu Fundamentals of Rotational.
Spring 2002 Lecture #11 Dr. Jaehoon Yu 1.Center of Mass 2.Motion of a System of Particles 3.Angular Displacement, Velocity, and Acceleration 4.Angular.
Wednesday, June 6, 2007PHYS , Summer 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #6 Wednesday, June 6, 2007 Dr. Jaehoon Yu Reference.
Thursday, Oct. 30, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 1 PHYS 1443 – Section 004 Lecture #19 Thursday, Oct. 30, 2014 Dr. Jaehoon Yu Rolling Kinetic.
Tuesday, June 26, 2007PHYS , Summer 2006 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #15 Tuesday, June 26, 2007 Dr. Jaehoon Yu Rotational.
Chapter 9:Linear Momentum
Wednesday, June 20, 2007PHYS , Summer 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #12 Wednesday, June 20, 2007 Dr. Jaehoon Yu Impulse.
Wednesday, Oct. 20, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 1 1.Linear Momentum 2.Linear Momentum and Forces 3.Conservation of Momentum 4.Impulse and.
Wednesday, Oct. 31, 2007 PHYS , Fall 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #16 Wednesday, Oct. 31, 2007 Dr. Jae Yu Two Dimensional.
Wednesday, Nov. 10, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 1 1.Moment of Inertia 2.Parallel Axis Theorem 3.Torque and Angular Acceleration 4.Rotational.
Monday, Nov. 3, 2008PHYS , Fall 2008 Dr. Jaehoon Yu 1 PHYS , Fall 2008 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #15 Monday, Nov.
Wednesday, June 29, 2011 PHYS , Summer 2011 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #14 Wednesday, June 29, 2011 Dr. Jaehoon Yu Motion.
Monday, June 13, 2011PHYS , Spring 2011 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #5 Monday, June 13, 2011 Dr. Jaehoon Yu Newton’s Laws.
Thursday, June 19, 2008PHYS , Summer 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture # 12 Thursday, June 19, 2008 Dr. Jaehoon Yu Center of.
Monday, Nov. 4, 2002PHYS , Fall 2002 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #14 Monday, Nov. 4, 2002 Dr. Jaehoon Yu 1.Parallel Axis Theorem.
Monday, Sept. 29, PHYS , Fall 2008 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #8 Monday, Sept. 29, 2008 Dr. Jaehoon Yu Newton’s Laws.
Monday, Nov. 22, 2010PHYS , Fall 2010 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #19 Monday, Nov. 22, 2010 Dr. Jaehoon Yu Equations of Rotational.
Monday, Apr. 14, 2008 PHYS , Spring 2008 Dr. Jaehoon Yu 1 PHYS 1441 – Section 002 Lecture #21 Monday, Apr. 14, 2008 Dr. Jaehoon Yu Rolling Motion.
Spring 2002 Lecture #10 Dr. Jaehoon Yu 1.Term exam results 2.Linear Momentum 3.Momentum Conservation 4.Impulse and Momentum 5.What are Collisions?
PHYS 1441 – Section 501 Lecture #12
PHYS 1441 – Section 501 Lecture #10
PHYS 1443 – Section 003 Lecture #17
PHYS 1443 – Section 001 Lecture #15
PHYS 1443 – Section 001 Lecture #12
PHYS 1443 – Section 002 Lecture #15
PHYS 1443 – Section 003 Lecture #16
PHYS 1441 – Section 001 Lecture # 11
PHYS 1443 – Section 003 Lecture #11
PHYS 1443 – Section 003 Lecture #10
PHYS 1443 – Section 501 Lecture #19
PHYS 1443 – Section 003 Lecture #11
PHYS 1443 – Section 002 Lecture #16
PHYS 1441 – Section 002 Lecture #18
PHYS 1441 – Section 501 Lecture #11
PHYS 1443 – Section 501 Lecture #16
PHYS 1443 – Section 003 Lecture #15
PHYS 1441 – Section 004 Lecture #14
PHYS 1443 – Section 003 Lecture #10
PHYS 1441 – Section 001 Lecture # 12
PHYS 1441 – Section 001 Lecture # 11
PHYS 1443 – Section 001 Lecture #15
Presentation transcript:

Wednesday, July 7, 2004PHYS , Summer 2004 Dr. Jaehoon Yu 1 PHYS 1441 – Section 501 Lecture #11 Wednesday, July 7, 2004 Dr. Jaehoon Yu Collisions Center of Mass CM of a group of particles Fundamentals on Rotation Rotational Kinematics Relationships between linear and angular quantities Remember the second term exam, Monday, July 19!! Today’s homework is HW#5, due 6pm next Wednesday!!

Wednesday, July 7, 2004PHYS , Summer 2004 Dr. Jaehoon Yu 2 Announcements Quiz results: –Class average: 57.2 –Want to know how you did compared to Quiz #1? Average Quiz #1: 36.2 –Top score: 90 I am impressed of your marked improvement Keep this trend up, you will all get 100% soon…

Wednesday, July 7, 2004PHYS , Summer 2004 Dr. Jaehoon Yu 3 Elastic and Inelastic Collisions Collisions are classified as elastic or inelastic by the conservation of kinetic energy before and after the collisions. A collision in which the total kinetic energy and momentum are the same before and after the collision. Momentum is conserved in any collisions as long as external forces negligible. Elastic Collision Two types of inelastic collisions:Perfectly inelastic and inelastic Perfectly Inelastic: Two objects stick together after the collision moving at a certain velocity together. Inelastic: Colliding objects do not stick together after the collision but some kinetic energy is lost. Inelastic Collision A collision in which the total kinetic energy is not the same before and after the collision, but momentum is. Note: Momentum is constant in all collisions but kinetic energy is only in elastic collisions.

Wednesday, July 7, 2004PHYS , Summer 2004 Dr. Jaehoon Yu 4 Example for Collisions A car of mass 1800kg stopped at a traffic light is rear-ended by a 900kg car, and the two become entangled. If the lighter car was moving at 20.0m/s before the collision what is the velocity of the entangled cars after the collision? The momenta before and after the collision are What can we learn from these equations on the direction and magnitude of the velocity before and after the collision? m1m1 20.0m/s m2m2 vfvf m1m1 m2m2 Since momentum of the system must be conserved The cars are moving in the same direction as the lighter car’s original direction to conserve momentum. The magnitude is inversely proportional to its own mass. Before collision After collision

Wednesday, July 7, 2004PHYS , Summer 2004 Dr. Jaehoon Yu 5 Two dimensional Collisions In two dimension, one can use components of momentum to apply momentum conservation to solve physical problems. m2m2 m1m1 v 1i m1m1 v 1f  m2m2 v 2f  Consider a system of two particle collisions and scatters in two dimension as shown in the picture. (This is the case at fixed target accelerator experiments.) The momentum conservation tells us: And for the elastic conservation, the kinetic energy is conserved: What do you think we can learn from these relationships? x-comp. y-comp.

Wednesday, July 7, 2004PHYS , Summer 2004 Dr. Jaehoon Yu 6 Example of Two Dimensional Collisions Proton #1 with a speed 3.50x10 5 m/s collides elastically with proton #2 initially at rest. After the collision, proton #1 moves at an angle of 37 o to the horizontal axis and proton #2 deflects at an angle  to the same axis. Find the final speeds of the two protons and the scattering angle of proton #2, . Since both the particles are protons m 1 =m 2 =m p. Using momentum conservation, one obtains m2m2 m1m1 v 1i m1m1 v 1f  m2m2 v 2f  Canceling m p and put in all known quantities, one obtains From kinetic energy conservation: Solving Eqs. 1-3 equations, one gets Do this at home x-comp. y-comp.

Wednesday, July 7, 2004PHYS , Summer 2004 Dr. Jaehoon Yu 7 Center of Mass We’ve been solving physical problems treating objects as sizeless points with masses, but in realistic situation objects have shapes with masses distributed throughout the body. Center of mass of a system is the average position of the system’s mass and represents the motion of the system as if all the mass is on the point. Consider a massless rod with two balls attached at either end. The total external force exerted on the system of total mass M causes the center of mass to move at an acceleration given by as if all the mass of the system is concentrated on the center of mass. What does above statement tell you concerning forces being exerted on the system? m1m1 m2m2 x1x1 x2x2 The position of the center of mass of this system is the mass averaged position of the system x CM CM is closer to the heavier object

Wednesday, July 7, 2004PHYS , Summer 2004 Dr. Jaehoon Yu 8 Center of Mass of a Rigid Object The formula for CM can be expanded to Rigid Object or a system of many particles A rigid body – an object with shape and size with mass spread throughout the body, ordinary objects – can be considered as a group of particles with mass m i densely spread throughout the given shape of the object The position vector of the center of mass of a many particle system is mimi riri r CM

Wednesday, July 7, 2004PHYS , Summer 2004 Dr. Jaehoon Yu 9 Example 7-11 Thee people of roughly equivalent mass M on a lightweight (air-filled) banana boat sit along the x axis at positions x 1 =1.0m, x 2 =5.0m, and x 3 =6.0m. Find the position of CM. Using the formula for CM

Wednesday, July 7, 2004PHYS , Summer 2004 Dr. Jaehoon Yu 10 Example for Center of Mass in 2-D A system consists of three particles as shown in the figure. Find the position of the center of mass of this system. Using the formula for CM for each position vector component m1m1 y=2 (0,2) m2m2 x=1 (1,0) m3m3 x=2 (2,0) One obtains If (0.75,4) r CM

Wednesday, July 7, 2004PHYS , Summer 2004 Dr. Jaehoon Yu 11 Motion of a Diver and the Center of Mass Diver performs a simple dive. The motion of the center of mass follows a parabola since it is a projectile motion. Diver performs a complicated dive. The motion of the center of mass still follows the same parabola since it still is a projectile motion. The motion of the center of mass of the diver is always the same.