1 Iterative Joint Source-Channel Soft-Decision Sequential Decoding Algorithms for Parallel Concatenated Variable Length Code and Convolutional Code Reporter.

Slides:



Advertisements
Similar presentations
Noise-Predictive Turbo Equalization for Partial Response Channels Sharon Aviran, Paul H. Siegel and Jack K. Wolf Department of Electrical and Computer.
Advertisements

Iterative Equalization and Decoding
Transform-domain Wyner-Ziv Codec for Video 教師 : 楊士萱 老師 學生 : 李桐照 同學.
Inserting Turbo Code Technology into the DVB Satellite Broadcasting System Matthew Valenti Assistant Professor West Virginia University Morgantown, WV.
Information Theory EE322 Al-Sanie.
The Impact of Channel Estimation Errors on Space-Time Block Codes Presentation for Virginia Tech Symposium on Wireless Personal Communications M. C. Valenti.
Modern Digital and Analog Communication Systems Lathi Copyright © 2009 by Oxford University Press, Inc. C H A P T E R 15 ERROR CORRECTING CODES.
Chapter 6 Information Theory
EEE377 Lecture Notes1 EEE436 DIGITAL COMMUNICATION Coding En. Mohd Nazri Mahmud MPhil (Cambridge, UK) BEng (Essex, UK) Room 2.14.
Error Control Coding for Wyner-Ziv System Application 指 導 教 授:楊 士 萱 報 告 學 生:李 桐 照.
Turbo Codes – Decoding and Applications Bob Wall EE 548.
Turbo Codes Azmat Ali Pasha.
Retargetting Motion to New Characters SIGGRAPH ’98 Speaker: Alvin Date: 6 July 2004.
Distributed Video Coding. Outline Distributed video coding Lossless compression Lossy compression Low complexity video encoding Distributed image coding.
Information Theory Eighteenth Meeting. A Communication Model Messages are produced by a source transmitted over a channel to the destination. encoded.
EE436 Lecture Notes1 EEE436 DIGITAL COMMUNICATION Coding En. Mohd Nazri Mahmud MPhil (Cambridge, UK) BEng (Essex, UK) Room 2.14.
Division of Engineering and Applied Sciences DIMACS-04 Iterative Timing Recovery Aleksandar Kavčić Division of Engineering and Applied Sciences Harvard.
EEE377 Lecture Notes1 EEE436 DIGITAL COMMUNICATION Coding En. Mohd Nazri Mahmud MPhil (Cambridge, UK) BEng (Essex, UK) Room 2.14.
Teacher : Ing-Jer Huang TA : Chien-Hung Chen 2015/6/30 Course Embedded Systems : Principles and Implementations Weekly Preview Question CH7.1~CH /12/26.
EE 3220: Digital Communication Dr Hassan Yousif 1 Dr. Hassan Yousif Ahmed Department of Electrical Engineering College of Engineering at Wadi Aldwasser.
Distribute Video Coding 林明德. Lossless Compression 不考慮 X 和 Y 的相關性,直接傳送 X 和 Y 各需要使用 3bits ,總共傳出 的 bit 數為 6bits 。 (1) 考慮 X 和 Y 的相關性 (2) 將 Y 直接傳出,使用 3bits.
Improving the Performance of Turbo Codes by Repetition and Puncturing Youhan Kim March 4, 2005.
Page 1 Effective Synchronization Scheme for Impulse Radio Ultra Wideband Systems 適用於脈衝無線電超寬頻系統之有效率的同步 機制 東海大學.電機工程學系 溫志宏 教授.
Compression with Side Information using Turbo Codes Anne Aaron and Bernd Girod Information Systems Laboratory Stanford University Data Compression Conference.
Concatenated Codes, Turbo Codes and Iterative Processing
Channel Polarization and Polar Codes
林茂昭 教授 台大電機系 個人專長 錯誤更正碼 數位通訊
On the Coded Complex Field Network Coding Scheme for Multiuser Cooperative Communications with Regenerative Relays Caixi Key Lab of Information.
1 Lossless DNA Microarray Image Compression Source: Thirty-Seventh Asilomar Conference on Signals, Systems and Computers, Vol. 2, Nov. 2003, pp
A Soft Decision Decoding Scheme for Wireless COFDM with Application to DVB-T Advisor : Yung-An Kao Student : Chi-Ting Wu
ECE 4371, Fall, 2014 Introduction to Telecommunication Engineering/Telecommunication Laboratory Zhu Han Department of Electrical and Computer Engineering.
III. Turbo Codes.
CODED COOPERATIVE TRANSMISSION FOR WIRELESS COMMUNICATIONS Prof. Jinhong Yuan 原进宏 School of Electrical Engineering and Telecommunications University of.
A Novel technique for Improving the Performance of Turbo Codes using Orthogonal signalling, Repetition and Puncturing by Narushan Pillay Supervisor: Prof.
Wireless Mobile Communication and Transmission Lab. Theory and Technology of Error Control Coding Chapter 5 Turbo Code.
Doc.: IEEE /0039r0 Submission January 2007 SooYoung Chang, Huawei TechnologiesSlide 1 IEEE P Wireless RANs Date: Authors: Soft.
Digital Communications I: Modulation and Coding Course Term Catharina Logothetis Lecture 12.
Coding Theory. 2 Communication System Channel encoder Source encoder Modulator Demodulator Channel Voice Image Data CRC encoder Interleaver Deinterleaver.
Multiple-description iterative coding image watermarking Source: Authors: Reporter: Date: Digital Signal Processing, Vol. 20, No. 4, pp , 2010.
Name Iterative Source- and Channel Decoding Speaker: Inga Trusova Advisor: Joachim Hagenauer.
ITERATIVE CHANNEL ESTIMATION AND DECODING OF TURBO/CONVOLUTIONALLY CODED STBC-OFDM SYSTEMS Hakan Doğan 1, Hakan Ali Çırpan 1, Erdal Panayırcı 2 1 Istanbul.
VIRGINIA POLYTECHNIC INSTITUTE & STATE UNIVERSITY MOBILE & PORTABLE RADIO RESEARCH GROUP MPRG Combined Multiuser Reception and Channel Decoding for TDMA.
Iterative Channel Estimation for Turbo Codes over Fading Channels Matthew C. Valenti Assistant Professor Dept. of Comp. Sci. & Elect. Eng. West Virginia.
Real-Time Turbo Decoder Nasir Ahmed Mani Vaya Elec 434 Rice University.
Part 1: Overview of Low Density Parity Check(LDPC) codes.
Iterative detection and decoding to approach MIMO capacity Jun Won Choi.
An ARQ Technique Using Related Parallel and Serial Concatenated Convolutional Codes Yufei Wu formerly with: Mobile and Portable Radio Research Group Virginia.
Turbo Codes. 2 A Need for Better Codes Designing a channel code is always a tradeoff between energy efficiency and bandwidth efficiency. Lower rate Codes.
VIRGINIA POLYTECHNIC INSTITUTE & STATE UNIVERSITY MOBILE & PORTABLE RADIO RESEARCH GROUP MPRG Iterative Multiuser Detection for Convolutionally Coded Asynchronous.
Log-Likelihood Algebra
Reed-Solomon Codes in Slow Frequency Hop Spread Spectrum Andrew Bolstad Iowa State University Advisor: Dr. John J. Komo Clemson University.
Implementation of Turbo Code in TI TMS320C8x Hao Chen Instructor: Prof. Yu Hen Hu ECE734 Spring 2004.
1 Block Truncation Coding Using Pattern Fitting Source: Pattern Recognition, vol.37, 2004, pp Authors: Bibhas Chandra Dhara, Bhabatosh Chanda.
Cooperative Communication in Wireless Networks Aria Nosratinia, University of Texas, Dallas, Todd E. Hunter, Nortel Networks Ahmadreza Hedayat, University.
A Bandwidth Efficient Pilot Symbol Technique for Coherent Detection of Turbo Codes over Fading Channels Matthew C. Valenti Dept. of Comp. Sci. & Elect.
1 Channel Coding: Part III (Turbo Codes) Presented by: Nguyen Van Han ( ) Wireless and Mobile Communication System Lab.
1 Code design: Computer search Low rate: Represent code by its generator matrix Find one representative for each equivalence class of codes Permutation.
10/19/20051 Turbo-NFSK: Iterative Estimation, Noncoherent Demodulation, and Decoding for Fast Fading Channels Shi Cheng and Matthew C. Valenti West Virginia.
Bridging the Gap Between Parallel and Serial Concatenated Codes
Factor Graphs and the Sum-Product Algorithm
Rate 7/8 (1344,1176) LDPC code Date: Authors:
Shi Cheng and Matthew C. Valenti Lane Dept. of CSEE
Coding and Interleaving
Digital Communication Chapter 1: Introduction
Distributed Compression For Binary Symetric Channels
Miguel Griot, Andres I. Vila Casado, and Richard D. Wesel
Time Varying Convolutional Codes for Punctured Turbocodes
Unequal Error Protection for Video Transmission over Wireless Channels
Homework #2 Due May 29 , Consider a (2,1,4) convolutional code with g(1) = 1+ D2, g(2) = 1+ D + D2 + D3 a. Draw the.
IV. Convolutional Codes
Presentation transcript:

1 Iterative Joint Source-Channel Soft-Decision Sequential Decoding Algorithms for Parallel Concatenated Variable Length Code and Convolutional Code Reporter :林煜星 Advisor : Prof. Y.M. Huang

2 Outline Introduction Related Research –Transmission Model for BCJR –Simulation for BCJR Algorithm Proposed Methodology –Transmission Model for Sequential –Simulation for Soft-Decision Sequential Algorithm Conclusion

3 Demodulator Channel Decoder Source Decoder User Joint Decoder 資料壓縮資料壓縮 錯誤更正碼錯誤更正碼 Discrete source Source Encoder Channel Encoder Modulator Introduction Channel

4 Related Research [1]L. Guivarch, J.C. Carlach and P. Siohan [2]M. Jeanne, J.C. Carlach, P. Siohan and L.Guivarch [3]M. Jeanne, J.C. Carlach, Pierre Siohan

5 Transmission Model for BCJR Independent Source or first order Markov Source Huffman Coding Turbo Coding parallel concatenation Additive White Gaussian Noise Channel Turbo decoding Utilization of the SUBMAP Huffman Decoding P symbolsK bits P symbols a priori

6 Transmission Model for BCJR-Independent Source or first order Markov Source Independent Source or first order Markov Source Huffman Coding Turbo Coding parallel concatenation Additive White Gaussian Noise Channel Turbo decoding Utilization of the SUBMAP Huffman Decoding P symbolsK bits P symbols a priori

7 Transmission Model for BCJR-Independent Source or first order Markov Source(1) SymbolProbability A0.75 B0.125 C

8 Transmission Model for BCJR-Independent Source or first order Markov Source(2)

9 Transmission Model for BCJR- Independent Source or first order Markov Source(3) Y↓ ∣ X→ abC a b c Example:

10 Transmission Model for BCJR-Huffman Codign Independent Source or first order Markov Source Huffman Coding Turbo Coding parallel concatenation Additive White Gaussian Noise Channel Turbo decoding Utilization of the SUBMAP Huffman Decoding P symbolsK bits P symbols a priori

11 VLCSymbolProbability 0A B C0.125 Transmission Model for BCJR-Huffman Coding

12 Transmission Model for BCJR-Turbo Coding parallel concatenation Independent Source or first order Markov Source Huffman Coding Turbo Coding parallel concatenation Additive White Gaussian Noise Channel Turbo decoding Utilization of the SUBMAP Huffman Decoding P symbolsK bits P symbols a priori

13 d = (11101) u v Non Systematic Convolution code Transmission Model for BCJR-Turbo Coding parallel concatenation(1)

(4,1) (4,3) (5,1) (5,3) (5,2) (5,0) (4,0) (4,2) (3,1) (3,3) (3,0) (3,2) (2,1) (2,3) (2,0) (2,2) (1,1) (1,3) (1,0) (1,2) (0,1) (0,3) (0,0) (0,2) 11 d = (11101) Transmission Model for BCJR-Turbo Coding parallel concatenation(2)

15 Recursive Systematic Convolution(RSC) Transmission Model for BCJR-Turbo Coding parallel concatenation(3) Rate=1/2

16 Rate=1/4 Transmission Model for BCJR-Turbo Coding parallel concatenation(4)

Interleaver Transmission Model for BCJR-Turbo Coding parallel concatenation(5)

18 Rate=1/4 Transmission Model for BCJR-Turbo Coding parallel concatenation(6) Turbo Code rate1/3

19 Turbo Code rate=1/2 Transmission Model for BCJR-Turbo Coding parallel concatenation(7)

20 Independent Source or first order Markov Source Huffman Coding Turbo Coding parallel concatenation Additive White Gaussian Noise Channel Turbo decoding Utilization of the SUBMAP Huffman Decoding P symbolsK bits P symbols a priori Transmission Model for BCJR-AWGN

21 Transmission Model for BCJR-AWGN(1)

22 Independent Source or first order Markov Source Huffman Coding Turbo Coding parallel concatenation Additive White Gaussian Noise Channel Turbo decoding Utilization of the SUBMAP Huffman Decoding P symbolsK bits P symbols a priori Transmission Model for BCJR-Turbo decoding Utilization of the SUBMAP

23 BCJR1 priori Transmission Model for BCJR-Turbo decoding Utilization of the SUBMAP(5) BCJR2

24 MAP Decoder Define Transmission Model for BCJR-Turbo decoding Utilization of the SUBMAP(1)

25 Logarithm of Likelihood Ratio(LLR) Transmission Model for BCJR-Turbo decoding Utilization of the SUBMAP(2) Recall

26 (4,1) (4,3) (5,1) (5,3) (5,2) 1 0 Transmission Model for BCJR-Turbo decoding Utilization of the SUBMAP(3)

27 (0,0) (2,3)(3,3) (5,0) Transmission Model for BCJR-Turbo decoding Utilization of the SUBMAP(4)

28 BCJR1 priori Transmission Model for BCJR-Turbo decoding Utilization of the SUBMAP(5) BCJR2

29 Transmission Model for BCJR-Turbo decoding Utilization of the SUBMAP(6)

30 Simulation for BCJR Algorithm The end of the transmission occurs when either the maximum bit error number fixed to 1000, or the maximum transmitted bits equal to is reached. Input date into blocks of 4096 bits

31 Simulation for BCJR Algorithm(1) 1NP : 1 次 iteration independent source No Use a priori probability 1NP : 1 次 iteration independent source Use a priori probability

32 Simulation for BCJR Algorithm(2) 1NP : 1 次 iteration Markov Source No use a proiri probability 1MP : 1 次 iteration Markov Source Use Markvo a priori probability

33 Simulation for BCJR Algorithm(3) 12D : 1 次 iteration Independent Source Use a priori probability Bit time(level) 、 Convolution state 13D : 1 次 iteration Independent Source Use a priori probability Bit time(level) 、 tree state Convolution state

34 Proposed Methodology [4]Catherine Lamy, Lisa Perros-Meilhac

35 Sequential priori Transmission Model for Sequential- Sequential Decoding BCJR2

36 1 : if 0 : Otherwise Code word bits Transmission Model for Sequential- Sequential Decoding(1)

37 (0,0) (1,1) y=(10) |r| =(13) (1,0) (0,0) (1,1) (1,0) Origin node Open y=(00) |r| =(21) 1 4 (2,1) (2,0) (2,1) (1,1) (2,0) (1,0) 4 1 (3,1) y=(11) |r| =(21) (3,0) (3,1) (3,0) (2,0) Close 4 2 (4,3) y=(11) |r| =(31) (4,2) (2,1) (3,0) (4,3) (1,1) (4,2) (3,1) (5,0) y=(00) |r| =(12) (5,1) (5,0) (2,1) (3,0) (4,3) (1,1) (5,1) (4,2) Example: r=(-1, 3,2,1,-2,-1,-3,-1,1,2) y=(1,0,0,0,1,1,1,1,0,0) Transmission Model for Sequential- Sequential Decoding(2)

38 Transmission Model for Sequential- Sequential Decoding(2)

39 Simulation for Sequential Algorithm 2D1 : 1 次 iteration Independent Source Use a priori probability Bit time(level) 、 Convolution state 3D1 : 1 次 iteration Independent Source Use a priori probability Bit time(level) 、 Convolution state 、 tree state

40

41 Heuristic 方法求 Sequential Decoder Soft- Output value 運用在 Iterative 解碼架構,雖然 使錯誤降低,節省運算時間,但解碼效果 無法接近 Tubro Decoder 的解碼效果,為來 將繼續研究更佳的方法求 Sequential Decoder Soft-Output value 使解碼效果更逼近 Turbo Decoder 的解碼效果 Conclusion