Multimedia Programming 10: Image Morphing

Slides:



Advertisements
Similar presentations
Order-k Voronoi Diagram in the Plane
Advertisements

Efficient access to TIN Regular square grid TIN Efficient access to TIN Let q := (x, y) be a point. We want to estimate an elevation at a point q: 1. should.
 Distance Problems: › Post Office Problem › Nearest Neighbors and Closest Pair › Largest Empty and Smallest Enclosing Circle  Sub graphs of Delaunay.
Morphing & Warping 2D Morphing Involves 2 steps 1.Image warping “get features to line up” 2.Cross-dissolve “mix colors” (fade-in/fadeout transition)
Computational Geometry II Brian Chen Rice University Computer Science.
Morphing CSE 590 Computational Photography Tamara Berg.
Ruslana Mys Delaunay Triangulation Delaunay Triangulation (DT)  Introduction  Delaunay-Voronoi based method  Algorithms to compute the convex hull 
By Groysman Maxim. Let S be a set of sites in the plane. Each point in the plane is influenced by each point of S. We would like to decompose the plane.
3/5/15CMPS 3130/6130 Computational Geometry1 CMPS 3130/6130 Computational Geometry Spring 2015 Delaunay Triangulations II Carola Wenk Based on: Computational.
Discrete Geometry Tutorial 2 1
2-D IMAGE MORPHING.
2D preobrazba (morphing). 2D preobrazba dekle-tiger.
3. Delaunay triangulation
Delaunay Triangulation Computational Geometry, WS 2006/07 Lecture 11 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
By Eyal Dushkin [Ed] Chapter 1. I. Introduction Reminder – Voronoi Diagrams  Let S be a set of sites in the plane.  Each point in the plane.
1 Computer Science 631 Lecture 2: Morphing Ramin Zabih Computer Science Department CORNELL UNIVERSITY.
CSCE 641:Computer Graphics Image Warping/Morphing Jinxiang Chai.
Lecture 10 : Delaunay Triangulation Computational Geometry Prof. Dr. Th. Ottmann 1 Overview Motivation. Triangulation of Planar Point Sets. Definition.
CSCE 641:Computer Graphics Image Warping/Morphing Jinxiang Chai.
Center for Graphics and Geometric Computing, Technion 1 Computational Geometry Chapter 9 Delaunay Triangulation.
Image Morphing : Rendering and Image Processing Alexei Efros.
Computational Photography Image Warping/Morphing Jinxiang Chai.
CS CS 175 – Week 3 Triangulating Point Clouds VD, DT, MA, MAT, Crust.
Image Morphing : Computational Photography Alexei Efros, CMU, Fall 2005 © Alexey Tikhonov.
Computing the Delaunay Triangulation By Nacha Chavez Math 870 Computational Geometry; Ch.9; de Berg, van Kreveld, Overmars, Schwarzkopf By Nacha Chavez.
Image Morphing, Triangulation CSE399b, Spring 07 Computer Vision.
Part Two Multiresolution Analysis of Arbitrary Meshes M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, W. Stuetzle SIGGRAPH 95.
Image warping/morphing Digital Video Special Effects Fall /10/17 with slides by Y.Y. Chuang,Richard Szeliski, Steve Seitz and Alexei Efros.
Image Morphing, Thin-Plate Spline Model CSE399b, Spring 07 Computer Vision
Delaunay Triangulations Presented by Glenn Eguchi Computational Geometry October 11, 2001.
Image Morphing CSC320: Introduction to Visual Computing
CS 376b Introduction to Computer Vision 02 / 26 / 2008 Instructor: Michael Eckmann.
CSCE 441: Computer Graphics Image Warping/Morphing Jinxiang Chai.
Voronoi diagrams and applications Prof. Ramin Zabih
Image Warping / Morphing
Geometric Operations and Morphing.
Computational Photography Derek Hoiem, University of Illinois
Image Morphing Computational Photography Derek Hoiem, University of Illinois 10/02/12 Many slides from Alyosha Efros.
Image Warping and Morphing cs195g: Computational Photography James Hays, Brown, Spring 2010 © Alexey Tikhonov.
Order-k Voronoi diagram in the plane Dominique Schmitt Université de Haute-Alsace.
Advanced Multimedia Warping & Morphing Tamara Berg.
CS559: Computer Graphics Lecture 8: Warping, Morphing, 3D Transformation Li Zhang Spring 2010 Most slides borrowed from Yungyu ChuangYungyu Chuang.
Image Morphing ( Computational Photography) Jehee Lee Seoul National University With a lot of slides stolen from Alexei Efros and Seungyong Lee.
L8 - Delaunay triangulation L8 – Delaunay triangulation NGEN06(TEK230) – Algorithms in Geographical Information Systems.
Image Morphing Computational Photography Derek Hoiem, University of Illinois 9/29/15 Many slides from Alyosha Efros.
Multimedia Programming 07: Image Warping Keyframe Animation Departments of Digital Contents Sang Il Park.
UNC Chapel Hill M. C. Lin Delaunay Triangulations Reading: Chapter 9 of the Textbook Driving Applications –Height Interpolation –Constrained Triangulation.
Image Warping and Morphing : Computational Photography Alexei Efros, CMU, Fall 2011 © Alexey Tikhonov.
Image Warping and Morphing © Alexey Tikhonov CS194: Image Manipulation & Computational Photography Alexei Efros, UC Berkeley, Fall 2015.
CS559: Computer Graphics Lecture 9: 3D Transformation and Projection Li Zhang Spring 2010 Most slides borrowed from Yungyu ChuangYungyu Chuang.
CS559: Computer Graphics Lecture 7: Image Warping and Panorama Li Zhang Spring 2008 Most slides borrowed from Yungyu ChuangYungyu Chuang.
Processing Images and Video for An Impressionist Effect Automatic production of “painterly” animations from video clips. Extending existing algorithms.
Image warping/morphing Digital Visual Effects, Spring 2006 Yung-Yu Chuang 2005/3/15 with slides by Richard Szeliski, Steve Seitz and Alexei Efros.
Algorithms and Networks
Image Morphing © Zooface Many slides from Alexei Efros, Berkeley.
2D preobrazba (morphing)
Jeremy Bolton, PhD Assistant Teaching Professor
CS 4501: Introduction to Computer Vision Sparse Feature Detectors: Harris Corner, Difference of Gaussian Connelly Barnes Slides from Jason Lawrence, Fei.
Image warping/morphing
COSC579: Image Align, Mosaic, Stitch
Computational Photography Derek Hoiem, University of Illinois
Computational Photography Derek Hoiem, University of Illinois
Image Warping and Morphing
Feature-Based Warping
Quantum Foundations Lecture 3
Feature-Based Warping
Image Stitching Linda Shapiro ECE/CSE 576.
Computer Graphics: Image Warping/Morphing
Image Morphing using mesh warp and feature based warp
Presentation transcript:

Multimedia Programming 10: Image Morphing Departments of Digital Contents Sang Il Park

Outline Review Image Morphing

Review: Image Processing Filtering Image Warping Brightness/contrast Gamma Histogram Equalization Blur/Unsharp Filtering Image Warping Scaling Rotation Translation

Transition from one to the other Image Morphing Transition from one to the other Lots of slides taken from Alexei Efros

Morphing = Object Averaging The aim is to find “an average” between two objects Not an average of two images of objects… …but an image of the average object! How can we make a smooth transition in time? Do a “weighted average” over time t How do we know what the average object looks like? We haven’t a clue! But we can often fake something reasonable Usually required user/artist input

Averaging Points P and Q can be anything: What’s the average v = Q - P What’s the average of P and Q? P P + 1.5v = P + 1.5(Q – P) = -0.5P + 1.5 Q (extrapolation) P + 0.5v = P + 0.5(Q – P) = 0.5P + 0.5 Q Linear Interpolation: A new point aP + bQ, defined only when a+b = 1 So aP+bQ = aP+(1-a)Q = (1-b)P+bQ P and Q can be anything: points on a plane (2D) or in space (3D) Colors in RGB or HSV (3D) Whole images (m-by-n D)… etc.

Idea #1: Cross-Dissolve Interpolate whole images: Imagehalfway = (1-t)*Image1 + t*image2 This is called cross-dissolve in film industry But what is the images are not aligned?

Idea #2: Align, then cross-disolve Align first, then cross-dissolve Alignment using global warp – picture still valid

Dog Averaging What to do? Feature matching! Cross-dissolve doesn’t work Global alignment doesn’t work Cannot be done with a global transformation (e.g. affine) Any ideas? Feature matching! Nose to nose, tail to tail, etc. This is a local (non-parametric) warp

Idea #3: Local warp, then cross-dissolve Morphing procedure: for every t, Find the average shape (the “mean dog”) local warping Find the average color Cross-dissolve the warped images

Local (non-parametric) Image Warping Need to specify a more detailed warp function Global warps were functions of a few (2,4,8) parameters Non-parametric warps u(x,y) and v(x,y) can be defined independently for every single location x,y! Once we know vector field u,v we can easily warp each pixel (use backward warping with interpolation)

Image Warping – non-parametric Move control points to specify a spline warp Spline produces a smooth vector field

Warp specification - dense How can we specify the warp? Specify corresponding spline control points interpolate to a complete warping function But we want to specify only a few points, not a grid

Warp specification - sparse How can we specify the warp? Specify corresponding points interpolate to a complete warping function How do we do it? How do we go from feature points to pixels?

Triangular Mesh Input correspondences at key feature points Define a triangular mesh over the points Same mesh in both images! Now we have triangle-to-triangle correspondences Warp each triangle separately from source to destination How do we warp a triangle? 3 points = affine warp! Just like texture mapping

Triangulations A triangulation of set of points in the plane is a partition of the convex hull to triangles whose vertices are the points, and do not contain other points. There are an exponential number of triangulations of a point set.

An O(n3) Triangulation Algorithm Repeat until impossible: Select two sites. If the edge connecting them does not intersect previous edges, keep it.

“Quality” Triangulations Let (T) = (1, 2 ,.., 3t) be the vector of angles in the triangulation T in increasing order. A triangulation T1 will be “better” than T2 if (T1) > (T2) lexicographically. The Delaunay triangulation is the “best” Maximizes smallest angles good bad

Improving a Triangulation In any convex quadrangle, an edge flip is possible. If this flip improves the triangulation locally, it also improves the global triangulation. If an edge flip improves the triangulation, the first edge is called illegal.

Illegal Edges Lemma: An edge pq is illegal iff one of its opposite vertices is inside the circle defined by the other three vertices. Proof: By Thales’ theorem. p q Theorem: A Delaunay triangulation does not contain illegal edges. Corollary: A triangle is Delaunay iff the circle through its vertices is empty of other sites. Corollary: The Delaunay triangulation is not unique if more than three sites are co-circular.

Naïve Delaunay Algorithm Start with an arbitrary triangulation. Flip any illegal edge until no more exist. Could take a long time to terminate.

Delaunay Triangulation by Duality General position assumption: There are no four co-circular points. Draw the dual to the Voronoi diagram by connecting each two neighboring sites in the Voronoi diagram. Corollary: The DT may be constructed in O(nlogn) time. This is what Matlab’s delaunay function uses.

Image Morphing We know how to warp one image into the other, but how do we create a morphing sequence? Create an intermediate shape (by interpolation) Warp both images towards it Cross-dissolve the colors in the newly warped images

Warp interpolation How do we create an intermediate warp at time t? Assume t = [0,1] Simple linear interpolation of each feature pair (1-t)*p1+t*p0 for corresponding features p0 and p1

Other Issues Beware of folding Morphing can be generalized into 3D You are probably trying to do something 3D-ish Morphing can be generalized into 3D If you have 3D data, that is! Extrapolation can sometimes produce interesting effects Caricatures

Dynamic Scene