IIB on K3 £ T 2 /Z 2 orientifold + flux and D3/D7: a supergravity view-point Dr. Mario Trigiante (Politecnico di Torino)

Slides:



Advertisements
Similar presentations
Can Integrable Cosmologies fit into Gauged Supergravity? Can Integrable Cosmologies fit into Gauged Supergravity? Pietro Frè University of Torino & Embassy.
Advertisements

Renata Kallosh Davis, May 16, 2004 Stanford Stanford Deformation, non-commutativity and cosmological constant problem.
 Symmetries and vanishing couplings in string-derived low-energy effective field theory              Tatsuo Kobayashi 1.Introduction.
Toward M5-branes from ABJM action Based on going project with Seiji Terashima (YITP, Kyoto U. ) Futoshi Yagi (YITP, Kyoto U.)
Dp-branes, NS5-branes and U-duality from nonabelian (2,0) theory with Lie 3-algebra Yoshinori Honma (SOKENDAI, KEK) in collaboration with M. Ogawa and.
Calabi-Yau compactifications: results, relations & problems
Spectroscopy of fermionic operators in AdS/CFT with flavor Ingo Kirsch Workshop „QCD and String Theory“ Ringberg Castle, Tegernsee, July 2-8, 2006 I. K.,
Brane-World Inflation
Type IIB Supergravity, D3 branes and ALE manifolds
Summing planar diagrams
SUSY Breaking in Local String Models J.P. Conlon, A. Maharana, FQ arXiv: [hep-th] ] R. Blumenhagen, J.P. Conlon, S. Krippendorf, S.Moster, FQ.
Non-perturbative effects in string theory compactifications Sergey Alexandrov Laboratoire Charles Coulomb Université Montpellier 2 in collaboration with.
Cosmic Billiards are fully integrable: Tits Satake projections and Kac Moody extensions Talk by Pietro Frè at Corfu 2005”
Pietro Fré Dubna July 2003 ] exp[ / Solv H
Heterotic strings and fluxes Based on: K. Becker, S. Sethi, Torsional heterotic geometries, to appear. K. Becker, C. Bertinato, Y-C. Chung, G. Guo, Supersymmetry.
Flux Compactifications: An Overview Sandip Trivedi Tata Institute of Fundamental Research, Mumbai, India Korea June 2008.
Gauged Supergravities in Different Frames Dr. Mario Trigiante (Politecnico di Torino) F.Cordaro, P.Frè, L.Gualtieri, P.Termonia, M.T Wit, Samtleben,
BRANE SOLUTIONS AND RG FLOW UNIVERSIDADE FEDERAL DE CAMPINA GRANDE September 2006 FRANCISCO A. BRITO.
Gauge/Gravity Duality 2 Prof Nick Evans AdS/CFT Correspondence TODAY Quarks Deforming AdS Confinement Chiral Symmetry Breaking LATER Other brane games.
Anomaly cancellations on heterotic 5-branes ( 前編 ) 矢田 雅哉.
Boundaries in Rigid and Local Susy Dmitry V. Belyaev and Peter van Nieuwenhuizen.
1 Superstring vertex operators in type IIB matrix model Satoshi Nagaoka (KEK) with Yoshihisa Kitazawa (KEK & Sokendai) String Theory and Quantum Field.
Renata Kallosh Seoul, September Stanford Stanford Stabilization of Moduli in String Theory.
Wayne Leonardo Silva de Paula Instituto Tecnológico de Aeronáutica Dynamical AdS/QCD model for light-mesons and baryons. Collaborators: Alfredo.
Gauge/Gravity Duality 2 Prof Nick Evans AdS/CFT Correspondence TODAY Quarks Deforming AdS Confinement Chiral Symmetry Breaking LATER Other brane games.
Road to the MSSM thru M theory ? Stuart Raby University of Michigan Ann Arbor May 5, 2007.
De Sitter in Supergravity and String Theory Diederik Roest (RUG) THEP national seminar November 20, 2009.
SHIFT SYMMETRY and INFLATION in SUPERGRAVITY Ph. Brax and J. Martin hep/th to appear in PRD.
Cosmic Acceleration in String Theory Diederik Roest DRSTP symposium `Trends in Theory 2009’
Inflation, String Theory, Andrei Linde Andrei Linde and Origins of Symmetry.
Monday, Apr. 2, 2007PHYS 5326, Spring 2007 Jae Yu 1 PHYS 5326 – Lecture #12, 13, 14 Monday, Apr. 2, 2007 Dr. Jae Yu 1.Local Gauge Invariance 2.U(1) Gauge.
Dynamical solutions in intersecting brane systems Kunihito Uzawa Osaka City University Advanced Mathematical Institute.
Exact Results for perturbative partition functions of theories with SU(2|4) symmetry Shinji Shimasaki (Kyoto University) JHEP1302, 148 (2013) (arXiv: [hep-th])
Axion and anomalous U(1) gauge symmetry Axion and anomalous U(1) gauge symmetry in string theory in string theory Kiwoon Choi (KAIST) ASK 2011 Apr.11 –
Cosmological Backgrounds of String Theory, Solvable Algebras and Oxidation A fully algebraic machinery to generate, classify and interpret Supergravity.
AdS 4 £ CP 3 superspace Dmitri Sorokin INFN, Sezione di Padova ArXiv: Jaume Gomis, Linus Wulff and D.S. SQS’09, Dubna, 30 July 2009 ArXiv:
The embedding-tensor formalism with fields and antifields. Antoine Van Proeyen K.U. Leuven Moscow, 4th Sakharov conf., May 21, 2009.
Effective supergravity descriptions of superstring cosmology Antoine Van Proeyen K.U. Leuven Barcelona, IRGAC, July 2006.
Solvable Lie Algebras in Supergravity and Superstrings Pietro Fré Bonn February 2002 An algebraic characterization of superstring dualities.
Mirage Mediation of SUSY Breaking K. S. Jeong KIAS 25 May, 2007 Based on hep-ph/ , hep-ph/
Domain-wall/QFT correspondence Wen-Yu Wen Academia Sinica Feb 24, 2006 A Bridge Connecting Gravity and Gauge Theory.
LLM geometries in M-theory and probe branes inside them Jun-Bao Wu IHEP, CAS Nov. 24, 2010, KITPC.
Anomalous U(1)΄s, Chern-Simons couplings and the Standard Model Pascal Anastasopoulos (INFN, Roma “Tor Vergata”) Pascal Anastasopoulos (INFN, Roma “Tor.
Gaugings and other Supergravity Tools for p brane Physics Pietro Fré Lectures at the RTN School, Paris 2001 IHS.
The Topological String Partition Function as a Wave Function (of the Universe) Erik Verlinde Institute for Theoretical Physics University of Amsterdam.
Introduction to Strings Yoshihisa Kitazawa KEK Nasu lecture 9/25/06.
Moduli stabilization, SUSY breaking and the Higgs sector Tatsuo Kobayashi 1. Introduction 2. KKLT scenario 3 . Generalized KKLT scenario 4. TeV scale mirage.
Non-Supersymmetric Attractors Sandip Trivedi Tata Institute of Fundamental Research, Mumbai, India Irvine, June’06.
Laboratoire Charles Coulomb
Is the four-dimensional effective theory effective? YITP Hideo Kodama HK and Kunihito Uzawa, JHEP0507:061(2005) HK and Kunihito Uzawa, hep-th/
ARNOLD-BELTRAMI FLUX 2-BRANES Pietro Frè Torino University & Embassy of Italy in the Russian Federation VII Round Table November 27-th.
Dmitri Sorokin, INFN Padova Section based on arXiv: with I. Bandos, L. Martucci and M. Tonin VII Round Table Italy-Russia, Dubna, November.
Torsional heterotic geometries Katrin Becker ``14th Itzykson Meeting'' IPHT, Saclay, June 19, 2009.
Holomorphic Anomaly Mediation Yu Nakayama (Caltech) arXiv: and to appear.
Moduli stabilization, SUSY breaking and the Higgs sector Tatsuo Kobayashi 1. Introduction 2. KKLT scenario 3 . Generalized KKLT scenario 4. TeV scale mirage.
P-Term Cosmology A.C. Davis (with C. Burrage) ,
ArXiv: (hep-th) Toshiaki Fujimori (Tokyo Institute of Technology) Minoru Eto, Sven Bjarke Gudnason, Kenichi Konishi, Muneto Nitta, Keisuke Ohashi.
Equivariant A-twisted GLSM and Gromov-Witten invariants
Can Integrable Cosmologies fit into Gauged Supergravity?
Takaaki Nomura(Saitama univ)
A Geometric Approach to Quantum Gravity
STRING THEORY AND M-THEORY: A Modern Introduction
Exceptional Flux Compactifications
Magnetic supersymmetry breaking
Kähler Moduli Inflation
Late-time Cosmology with String Gases
dark matter Properties stable non-relativistic non-baryonic
Heterotic strings and fluxes: status and prospects
Higher form gauge fields and membranes in D=4 supergravity
in collaboration with G. Ishiki, S. Shimasaki
Presentation transcript:

IIB on K3 £ T 2 /Z 2 orientifold + flux and D3/D7: a supergravity view-point Dr. Mario Trigiante (Politecnico di Torino)

Plan of the Talk General overview: Compactification with Fluxes and Gauged Supergravities. Type IIB on K3 x T 2 / Z 2 orientifold + fluxes and D3/D7 branes. N = 2 Gauged SUGRA N = 2, 1, 0 vacua, super-BEH mechanism and no-scale structure. Conclusions +

Superstring Theory in D=10M-Theory in D=11 Low-energy Supergravity in D=4 Compactified on R 1,3 £ M 6 Compactified on R 1,3 £ M 7 D=4 SUGRA: plethora of scalar fields moduli from geometry of M) From D=10,11: add fluxes In D=4: gauging Realistic models from String/M-theory ) V( ) 0, (predictive, spontaneous SUSY, cosmological constant…)

Type II flux-compactifications (+branes): very tentative (and rather incomplete) list of references Type II on: Hep-th/ CY 3 (orientifold) Michelson ; Gukov, Vafa, Witten Taylor, Vafa; Curio, Klemm, Kors, Lust DallAgata; Louis, Micu Kachru, Kallosh, Linde, Trivedi; Frey Giryavets,Kachru,Tripathy,Trivedi Grana,Grimm,Jockers, Louis; DAuria, Ferrara, M.T.;. Grimm, Louis ; Lust, Reffert, Stieberger; Smet, Van den Bergh ; ; ; ; ; ; ; ; ; ;; ; ; ; ; K3 x T 2 /Z 2 Orientifold Tripathy, Trivedi; Koyama, Tachikawa, Watari Andrianopoli, DAuria, Ferrara,Lledo Angelantonj,DAuria, Ferrara, M.T. DAuria, Ferrara, M.T ; ; ; ; T 6 /Z 2 Orientifold Frey, Polchinski Kachru, Schulz, Trivedi DAuria, Ferrara, Vaula DAuria, Ferrara, Lledo,Vaula DAuria, Ferrara, Gargiulo,M.T.,Vaula Berg, Haak, Kors ; ; ; ; ; ; T p-3 x T 9-p /Z 2 orientifold Angelantonj, Ferrara, M.T ; ; IIB on T 6 from N=8 de Wit, M.T., Samtleben ;

IIB on K3 x T 2 /Z 2 - orientifold with D3/D7: Type IIB bosonic sector: g MN,, B (2) NS-NS R-R C (0),C (2),C (4) (B (2),C (2) )´ (B (2) ) 2 2 SL(2,R) u global symmetry: u = C (0) - i e - 2 Compactification to D=4 and branes: x 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 M 1,3 K3T2T2 xx £ £ £ £ £ £ £ £ £ £ £ £ - - n 3 D3 n 7 D7 Low-en. brane dynamics: SYM (Coulomb ph.) on w.v. A r, y r = y r,8 + i y r,9 (r=1,…, n 3 ) A k, x k = x k,8 + i x k,9 (k=1,…,n 7 )

T 2 : {x p } (p=8,9) Basis of H 2 (K3,R): { I }, I = {m, a} m=1,2,3 a=1,…,19 Complex struct. moduli ( 2 ) Kaehler moduli (J 2 ) (except Vol(K3)) ( e m a ) $ L(e) 2 Complex struct.: Volume: Moduli from geometry of internal manifold K3 manifold (CY 2 ): { x 4, x 5, x 6, x 7 } !

world-sheet parity I 2 (T 2 ): x p !- x p Orientifold proj. wrt I (-) F L N=2 SUGRA in D=4 (ungauged) ) Define complex scalar s = C (4) K3 – i Vol(K3) E Scalars in non-lin. -model G A 0 A 1 S A 2 t A 3 u A k x k A r A,r y r n v = 3 + n 7 +n 3 A,1 C m, A,a e m a, C a 20 M scal = M SK [L(0,n 3,n 7 )] x MQMQ [] 2 (2,2) = 4 of SL(2) u x SL(2) t = SO(4) (,p) = 0,…,3] Surviving bulk fields

Geometry of M SK : Hodge-Kaehler manifold, locally described by choice of coordinates {z i } (i=1,…,n v ) and by a 2 (n v +1) -dim. section (z) of a holomorphic symplectic bundle on M SK which fixes couplings between {z i } and the vector field-strengths: n v Global symmetries: G = Isom( M scal ) Non-linear action on scalars Linear action F G g¢g¢ F G Sp(2 (n v +1),R) E/M duality promotes G to global sym. of f.eqs. E B. ids. g =2 G AB CD fixes E/M action of G on vector of f. strengths

Special coordinate basis sc (z): z i = X i /X 0 ; F 0 = - F; F i = F / z i sc (z) does not reproduce right couplings, i.e. right duality action of G of f. strengths ! Sp – rotation to correct (z) in new Sp-basis: s X = 0 ) F Correct duality action of G: Non-pert. pert.SL(2) u pert.SL(2) t Non-pert. SL(2) s A r A k A If (n 3 =0, n 7 =n) or (n 3 =n, n 7 =0), M SK [L(0,n 3,n 7 )] ! Symmetric:

Switching on fluxes: hs internal q-cycle F (q) i 0 Fluxes surviving the orientifold projection: (dB (2), dC (2) )´ (F p I Æ dx p ) F (3) 0 ) Local symmetries in D=4 N=2 SUGRA : C (4) kinetic term in D=10 F (5) Æ * F (5) (F (5) = dC (4) + F Æ F ) ( C I – f I A ) 2 Stueckelberg-coupling in D=4 Local translational invariance: C I ! C I + f I 4–dim. abelian gauge-group: G = { X } $ A ; A ! A + Integer ; fixed by tadpole cancellation condition.

In Isom( M Q )=SO(4,20) 22 translational global symmetries {Z I }: Gauge group generators X are 4 combinations of Z I defined by the fluxes: C I ! C I + X = f I Z I = f m Z m+ h a Z a Gauging: promote G ½ G to local symmetry of action Vector fields in co-Adj (G) ! gauge vectors Fermion/gravitino SUSY shifts Fermion/gravitino mass terms V( ) 0 (bilinear in f. shifts) ! r = + A X (minimal couplings) SUSY of action)

Action of X on hyper-scalars q u described by Killing vecs. k u expressed in terms of momentum maps P x (x=1,2,3: SU(2) holonomy index): 2 k u R x uv =r v P x k m =f m ; k a =h a P x / e L(e) -1 x m f m + L(e) -1 x a h a ] gaugino > 0 + hyperino > 0gaugino > 0 + gravitino < 0 Scalar potential: Vacua: bosonic b.g. ´ 0, V( 0 ) = 0 SUSY preserving vacua, 9 killing spin. (Fermi) = 0

SUSY vacua A,1 / X P x x AB B =0 A,a / (f m L -1 a m + h b L -1 a b ) X A = 0 / X P x x AB B =0 / g i j D j X P x x AB B =0 A,a ) e a m f m = e m a h a = 0; h a X =0 Equations for Killing spinor A K3 c.s. moduli fixing P x / e f x T 2 c.s. t fixing axion/dilaton u fixing ; ) condition on fluxes

N=2 vacua: / X f x x AB B = 0 8 A ) f x ´ 0 Flux has no positive norm vecs. in 3,19 h a X =0 has solution ) h a at most 2 indep. vecs. h 2 a=1 =g 2, h 3 a=2 =g 3 : h a X =0 ) e m a h a =0 ) e x a=1,2 ´ 0 t, u fixed s, x k, y r moduli C a=1,2 Goldstone eaten by A 2,3 ) a=1,2 hypers V( 0 )´ 0 (independent of moduli), effective theory is no-scale X 2 = X 3 = 0, t = u t 2 = -1+x k x k /2

N=1, 0 vacua: f 0 m=1 =g 0, f 1 m=2 =g 1 h 2 a=1 =g 2, h 3 a=2 =g 3 e a m f m = e m a h a =0 ) e x a=1,2 ´ 0; e x=1,2 a ´ 0 C m=1,2, C a=1,2 Goldstone b. ) a=1,2 hypers 2 Killing spin. : = 0, = 0 f 3 =0: flux at most 2 norm > 0 vecs.in 3,19 (primitivity of G (3) ) =x = 0 ) x k = 0, i.e. D7 branes fixed at origin of T 2 K3 c.s.fix ) Mass to A 0,1,2,3 h a X =0 ) X 2 = X 3 = 0 t = u = - i,

Moduli: s, y r ; C m=3 +i e C a +i e m=3 a, (a 1,2) M scal = x Superpotential (classical): W( 0 ) / e [X ( P 1 +i P 2 )] |0 / g 0 -g 1 (moduli indep.) g 0 = g 1 (N=1) g 0 g 1 (N=0) V 0 (moduli) ´ 0 (no-scale) More general N=1 vacua: g 2 SL(2) t £ SL(2) u : t = u = -i ! t 0, u 0 f, h m t = u = -i ) f=g.f, h=g.h m t = t 0, u = u 0

Conclusions Discussed instance of correspondence between flux compactification and gauged supergravity. Starting framework for studying more general situations pert. and non-pert.effects [Becker, Becker et al.; Kachru, Kallosh et al.] gauging compact isometries ! hybrid inflation [Koyama et al.] extended N=2 theory with tensor fields (some C I undualized) [DAuria et.al]

Vector kinetic terms described by complex matrix N (z, z) N constructed from (z): Section (z) in the new basis: