The BECQUEREL Project: Progress Report for Years 2006-8 and Plans for 2009-11 D. A. Artemenkov, V. Bradnov, A. I. Malakhov, D. O. Krivenkov, P. A. Rukoyatkin,

Slides:



Advertisements
Similar presentations
Short-range, high-LET recoil tracks in CR-39 plastic nuclear track detector E. R. Benton 1, C. E. Johnson 1, J. DeWitt 1, N. Yasuda 2, and E. V. Benton.
Advertisements

Neutron detectors and spectrometers 1) Complicated reactions → strong dependency of efficiency on energy 2) Small efficiency → necessity of large volumes.
Mass, Quark-number, Energy Dependence of v 2 and v 4 in Relativistic Nucleus- Nucleus Collisions Yan Lu University of Science and Technology of China Many.
1 General characteristics of AA collisions at 35 AGeV Yuri Kharlov, Serguei Sadovsky IHEP, Protvino LINC-2005, 5 October 2005.
11 Study of light nuclei cluster structure with nuclear track emulsion Denis Artemenkov, VBLHEP, JINR Predeal-Romania October 14-18, 2013.
Bucharest emulsion group along the time Who we are.
Alpha decay parent nucleus daughter nucleus Momentum conservation decides how the energy is distributed. r E 30 MeV 5 MeV.
Neutral Particles. Neutrons Neutrons are like neutral protons. –Mass is 1% larger –Interacts strongly Neutral charge complicates detection Neutron lifetime.
Introduction to Hadronic Final State Reconstruction in Collider Experiments Introduction to Hadronic Final State Reconstruction in Collider Experiments.
Identification of Upsilon Particles Using the Preshower Detector in STAR Jay Dunkelberger, University of Florida.
Radioactivity – types of decays presentation for April 28, 2008 by Dr. Brian Davies, WIU Physics Dept.
Particle Interactions
Analysis of Light Single-  Hypernuclei Events in Nuclear Emulsion Detected with Overall-scanning Method MYINT KYAW SOE, Kazuma NAKAZAWA, Kaoru HOSHINO,
Exploring the Universe with Particles and Rays: α, β, γ, X, Cosmic, … Toby Burnett Prof, UW.
Nuclear Physics E = mc 2. Outline Theory of Special Relativity Postulates E = mc 2 The Atom What makes up the atom? What holds the atom together? Quantum.
Cosmic Rays Discovery of cosmic rays Local measurements Gamma-ray sky (and radio sky) Origin of cosmic rays.
Radiation therapy is based on the exposure of malign tumor cells to significant but well localized doses of radiation to destroy the tumor cells. The.
1 Chapter 31 Nuclear Physics and Radioactivity Nuclear Structure a)Proton - positive charge - mass x kg ≈ 1 u b) Neutron - discovered.
Christina Markert Physics Workshop UT Austin November Christina Markert The ‘Little Bang in the Laboratory’ – Accelorator Physics. Big Bang Quarks.
11 Study of light nuclei cluster structure with nuclear track emulsion Denis Artemenkov VBLHEP, JINR EFB22-Krakow-2013.
NEEP 541 Radiation Interactions Fall 2003 Jake Blanchard.
1 Asymptotics in Relativistic Nuclear Physics A.Malakhov Joint Institute for Nuclear Research, Dubna The 1 st CBM-Russia-JINR Collaboration Meeting, Dubna,
Topology of multifragmentation of light relativistic nuclei by P. I. Zarubin, JINR On behalf of the BECQUEREL Collaboration All this and more on the Web.
XVIII International Baldin Seminar on High Energy Physics Problems "RELATIVISTIC NUCLEAR PHYSICS & QUANTUM CHROMODYNAMICS“ Dubna, September 27, 2006 Relativistic.
Nuclear Track Emulsion Workshop Romania Nuclear emulsion with molybdenum filling for 2  -decay observation V.D.Ashitkov, A.S.Barabash, V.J.Bradnova,
A.N.Sissakian, A.S.Sorin Very High Multiplicity Physics Seventh International Workshop JINR, Dubna, September 18, 2007 Status of the project NICA/MPD at.
April 23, 2008 Workshop on “High energy photon collisions at the LHC 1 Cem Güçlü İstanbul Technical University Physics Department Physics of Ultra-Peripheral.
Radiochemistry Dr Nick Evans
Light nuclei production in heavy-ion collisions at RHIC Md. Rihan Haque, for the STAR Collaboration Abstract Light nuclei (anti-nuclei) can be produced.
Cosmic Rays Cosmic Rays at Sea-Level - Extensive Air Showers and the detection of cosmic rays.
Experimental Studies of Spatial Distributions of Neutrons Produced by Set-ups with Thick Lead Target Irradiated by Relativistic Protons Vladimír Wagner.
The Use of Accelerator Beams for Calibration and Characterization of Solid State Nuclear Track Detectors Eric Benton Department of Physics Oklahoma State.
Particle Detectors for Colliders Robert S. Orr University of Toronto.
STATUS OF PREPARATION OF dp-ELASTIC SCATTERING STUDY AT THE EXTRACTED BEAM OF NUCLOTRON. Yu.V.Gurchin LHE JINR September 2009.
Nucleon Decay Search in the Detector on the Earth’s Surface. Background Estimation. J.Stepaniak Institute for Nuclear Studies Warsaw, Poland FLARE Workshop.
A STUDY OF TRIGGER ALGORITHMS FOR ULTRA PERIPHERAL COLLISIONS WITH THE ALICE DETECTOR Joey Butterworth, Dr. Yury Gorbunov, Dr. Janet Seger Department of.
Study of high energy cosmic rays by different components of back scattered radiation generated in the lunar regolith N. N. Kalmykov 1, A. A. Konstantinov.
Light nucleus clustering in fragmentation above 1 A GeV N. P. Andreeva a, D. A. Artemenkov b,V. Bradnova b, M. M. Chernyavsky c, A. Sh. Gaitinov a, S.
O FF - LINE TECHNIQUE FOR DEUTERON BEAM PARAMETERS DETERMINATION USING SOLID STATE NUCLEAR TRACK DETECTORS E XPERIMENTS AT THE QUINTA TARGET (D UBNA, R.
1 Study of 7 Be relativistic fragmentation in nuclear track emulsion Denis Artemenkov, VBLHE, JINR ( for the BECQUEREL collaboration )
Signals of bimodality in fragmentation induced by 3.65 A GeV 12C B.Grabez Institute of Physics Zemun.
Nuclear  -Radiation in Peripheral HIC at LHC V.L.Korotkikh, L.I. Sarycheva Moscow State University, Scobeltsyn Institute of Nuclear Physics CMS meeting,
SECONDARY-BEAM PRODUCTION: PROTONS VERSUS HEAVY IONS A. Kelić, S. Lukić, M. V. Ricciardi, K.-H. Schmidt GSI, Darmstadt, Germany  Present knowledge on.
Nuclear Size Fluctuations in Nuclear Collisions V.Uzhinsky, A.Galoyan The first RHIC result – Large elliptic flow of particles.
Thermal Multifragmentation: Experimental Study of Process Dynamics Spinodal State of Nuclear Matter Project FASA-3 Summer practice 2011, JINR Dubna.
FRAGMENTATION OF RELATIVISTIC 10 C NUCLEI IN NUCLEI EMULSION K. MAMATKULOV JINR, Dubna September.
IMPLANTATION OF 8 Нe NUCLEI IN NUCLEAR TRACK EMULSION K.Z. MAMATKULOV LHEP, JINR, Dubna, Russia. DjPI, Uzbekistan. “Workshop on Nuclear Track Emulsion.
Adam Para, Fermilab, February 16, Who Cares? What is the Problem? 2 Dual Readout Total Absorption calorimeter has very good energy resolution.
Fragmentation of relativistic 9 Be and 14 N nuclei in nuclear track emulsion D. A. Artemenkov JINR, Dubna BECQUREL Collaboration web site:
P.F.Ermolov SVD-2 status and experimental program VHMP 16 April 2005 SVD-2 status and experimental program 1.SVD history 2.SVD-2 setup 3.Experiment characteristics.
Introduction to Hadronic Final State Reconstruction in Collider Experiments Introduction to Hadronic Final State Reconstruction in Collider Experiments.
NUCLEAR FRAGMENTATION STUDIES WITH ANTIPROTON-NUCLEUS ANNIHILATIONS J. Kawada on behalf of the AE g IS collaboration. Albert Einstein Center for Fundamental.
Исследование кластеризации легких ядер в релятивистской фрагментации П.И. Зарубин (ОИЯИ, Дубна) N. P. Andreeva a, D. A. Artemenkov b,V. Bradnova b, M.
Lecture 5. Particle Properties of Waves (cont’d)
Investigation of Coherent Dissociation 10 C Nuclei at an Energy of 1.2 A GeV Mamatkulov Kahramon LHEP, JINR, Dubna JSPI, Uzbekistan EMIN’ October.
Nuclear emulsions One of the eldest particle detectors, still used in particle physics experiment (CHORUS, DONUT, OPERA) for its unique peculiarities:
FAST IN-MEDIUM FRAGMENTATION OF PROJECTILE NUCLEI
Review of ALICE Experiments
Topology of “ white ” stars in relativistic fragmentation of
Рабочее совещание «Перспективы метода ядерной эмульсии»
Experimental data: Method:
Selected Problems of Relativistic Nuclear Physics and Multiple Particle Production
August 31 – September 4, 2015, Groningen, Netherlands
Content Heavy ion reactions started fragmenting nuclei in the 1980’s. Its study taught us that nuclear matter has liquid and gaseous phases, phase.
Статус проекта БЕККЕРЕЛЬ и планы
of secondary light ion beams
Global Beam Energy Scan Global Beam Energy Scan
Neutron Detection with MoNA LISA
individual excitations of nucleons
Nuclear Energy Chapter 25 6/1/2019.
Presentation transcript:

The BECQUEREL Project: Progress Report for Years and Plans for D. A. Artemenkov, V. Bradnov, A. I. Malakhov, D. O. Krivenkov, P. A. Rukoyatkin, V. V. Rusakova, T. V. Shchedrina, P. I. Zarubin, I.G Zarubina V. I. Veksler and A. M. Baldin Laboratory of High Energy Phyiscs,JINR, Dubna, Russia M. M. Chernyavsky, S. P. Kharlamov, S. G. Gerasimov, L. A. Goncharova, G. I. Orlova, N. G. Peresadko, N. G. Polukhina P. N. Lebedev Physical Institute RAS, Moscow, Russia М. Haiduc, A. Neagu,E. Stefan М. Haiduc, A. Neagu, E. Stefan Institute of Space Sciences, Bucharest-Magurele, Romania A. A. Moiseenko, V. R. Sarkisyan Erevan Physical Institute, Erevan, Armenia R. Stanoeva Institute for Nuclear Research and Nuclear Energy BAS, Sofia, Bulgaria S. Vokal Safarik University, Kosice, Slovakia

The BECQUEREL Project (Beryllium (Boron) Clustering Quest in Relativistic Multifragmentation) at the JINR Nuclotron is devoted systematic exploration of clustering features of light stable and radioactive nuclei. A nuclear track emulsion is used to explore the fragmentation of the relativistic nuclei down to the most peripheral interactions - nuclear "white" stars. This technique provides a record spatial resolution and allows one to observe the 3D images of peripheral collisions. The analysis of the relativistic fragmentation of neutron-deficient isotopes has special advantages owing to a larger fraction of observable nucleons. Nuclear beams of energy higher than 1A GeV are recognized as a novel opportunity for the nuclear structure explorations. Among all variety of the nuclear interactions the peripheral dissociation bears uniquely complete information about the excited nucleus states above particle decay thresholds.

Superposition of microphotographs of interaction of relativistic nucleus 32 S and human hair taken with MBI-9 microscope and NIKON camera Nuclear Track Emulsions

NUCLOTRON: 2.1 А GeV 14 N Tatjana Shchedrina 132 events 1.2A GeV 14 N → 3He + H 50 “white” stars ( 2 events 6 He+ 3 He+ 4 He+ 1 H )

Nuclear Clustering Physics Program

CO2 laser

Z pr /A pr = 4/9 10 B → 9 Be.

370 events 1.2 A GeV 9 Be→2He 39 stars with heavy fragment of target nucleus (b-particle) 144 “white” stars +1.7 MeV 27 stars with target proton recoil (g-particle ) Denis Artemenkov

0 +, 8 Be(92 KeV, 6.8 eV) 2 +, 8 Be(2.9 MeV, 1. 5 MeV )

Suggested analysis: 2000 events 9 Be + p → 2α 9 Be + p → 2α Nadezhda Kornegrutsa

Z pr /A pr = 4/7 7 Li → 7 Be

1.6 MeV

Zpr/Apr = 5/8 10 B → 8 B

Nearer approach of the nuclei with an impact parameter (a), absorption of quasireal photon by 8B nucleus (b), 8B dissociation on fragment pair - p and 7Be (c). Diagram of peripheral dissociation of relativistic 8B nucleus in EM field of Ag nucleus

8 В (1.2 A GeV) → 7 Ве + p Ralica Stanoeva

8 B → 2 3 He + 2 H 8 B → 2 3 He + 2 H

Zpr/Apr = 2/3 12 C → 9 C

Major task: analysis of 9 Сexposure analysis of 9 С exposure Dmitry Krivenkov

Z pr /A pr = 5/12 12 C → 12 N

Suggested 10 C exposure

10 С

1.0 A ГэВ 10 B→2 3 Не+ 4 Не

Suggested 11 C exposure

2.0 A GeV 11 B→ 4 Не+ 7 Be

CONCLUDING REMARKS The presented observations serve as an illustration of prospects of the Nuclotron for nuclear physics and astrophysics researches. In spite of an extraordinarily large distinction from the nuclear excitation energy the relativistic scale does not impede investigations of nuclear interactions down to energy scale typical for nuclear astrophysics, but on the contrary gives advantages. The major one of them is the possibility of principle of observing and investigating multi-particle systems. The investigations with light nuclei provide a basis for challenging studies of increasingly complicated systems He – H - n produced via multifragmentation of heavier relativistic nuclei in the energy scale relevant for nuclear astrophysics. In this respect, the motivated prospects are associated with a detailed analysis of the already observed fragment jets in the events of EM&Diffractive dissociation of Au nuclei at 10.6A GeV and Pb nuclei at 160A GeV. Due to a record space resolution the emulsion technique provides unique entirety in studying of light nuclei, especially, neutron-deficient ones. Providing the 3D observation of narrow dissociation vertices this classical technique gives novel possibilities of moving toward more and more complicated nuclear systems. Therefore this technique deserves upgrade, without changes in its detection basics, with the aim to speed up the microscope scanning for rather rare events of peripheral dissociation.

3.65A GeV 28Si

NUCLOTRON: 1A GeV 56 Fe Elena Stefan Alina-Tania Neagu

SPS: 158 A GeV/c Pb

Наименование узлов и систем установки, ресурсов, источников финансирования Стоимость узлов (тыс.долл.) установки. Потребности в ресурсах Предложения лабораторий по распределению финансирования и ресурсов 1 г.2 г.3 г.4 г.5 г. Основные узлы и оборудование1.Датчики для микроскопов 2.Электроника, ФЭУ 1.20 тыс. дол тыс.долл. 35 тыс. долл. 25 тыс. долл. 20 тыс. долл. Необходимые ресурсы нормо ОП ОИЯИ – механические работы – электроника КБ ЛАБОРАТОРИЯ ООЭП 1 чел. год час Ускоритель (Нуклотрон) Реактор ЭВМ (тип) 100 Эксплуатационные расходы Источники финансирования бюджет Затраты из бюджета, в том числе инвалюные средства 80 тыс. долл. 35 тыс. долл. 25 тыс. долл. 20 тыс. долл. внебюджетные Вклады коллаборантов Средства по грантам Вклады спонсоров Средства по договорам Другие источники и т.д.

1. Фотоумножители (Hamamatsu, Photonis) 700 Euro 7 шт Euro 2. Зарядово-цифровой преобразователь CAEN C1205 или аналогичный 4000 Euro 1 шт Euro 3. Материалы и радиоэлектронные комплектующие детекторов и приемной электроники 2500 Euro 3000 Euro 4. Осциллограф TDS3000B 8000 Euro 1 шт Euro Итого: Euro Запрос на приобретение электронной аппаратуры формирования пучков на гг. (7000 Euro в год)

8 В (1.2A GeV) → 2Не + Н

Measured Charges of Secondary Fragments of 8 В Nucei Density of δ-electrons per 1 мм length of beam particles Z fr > 2.

8 B: Total P T ( 7 Be+p) EMD “white”stars nh≠0nh≠0nh≠0nh≠0