Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 External Sorting Chapters 13: 13.1—13.5.

Slides:



Advertisements
Similar presentations
External sorting R & G – Chapter 13 Brian Cooper Yahoo! Research.
Advertisements

External Sorting The slides for this text are organized into chapters. This lecture covers Chapter 11. Chapter 1: Introduction to Database Systems Chapter.
CMU SCS Carnegie Mellon Univ. Dept. of Computer Science /615 - DB Applications C. Faloutsos – A. Pavlo Lecture#12: External Sorting.
Equality Join R X R.A=S.B S : : Relation R M PagesN Pages Relation S Pr records per page Ps records per page.
Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke1 Evaluation of Relational Operations: Other Techniques Chapter 14, Part B.
Implementation of Other Relational Algebra Operators, R. Ramakrishnan and J. Gehrke1 Implementation of other Relational Algebra Operators Chapter 12.
Database Management Systems, R. Ramakrishnan and Johannes Gehrke1 Evaluation of Relational Operations: Other Techniques Chapter 12, Part B.
Database Management Systems, R. Ramakrishnan and Johannes Gehrke1 Evaluation of Relational Operations: Other Techniques Chapter 12, Part B.
Database Management Systems, R. Ramakrishnan and J. Gehrke1 External Sorting Chapter 11.
1 External Sorting Chapter Why Sort?  A classic problem in computer science!  Data requested in sorted order  e.g., find students in increasing.
External Sorting “There it was, hidden in alphabetical order.” Rita Holt R&G Chapter 13.
External Sorting CS634 Lecture 10, Mar 5, 2014 Slides based on “Database Management Systems” 3 rd ed, Ramakrishnan and Gehrke.
Database Management Systems, R. Ramakrishnan and J. Gehrke1 Query Evaluation Chapter 11 External Sorting.
External Sorting R & G Chapter 13 One of the advantages of being
External Sorting R & G Chapter 11 One of the advantages of being disorderly is that one is constantly making exciting discoveries. A. A. Milne.
CS 4432lecture #31 CS4432: Database Systems II Lecture #3 Professor Elke A. Rundensteiner.
Query Processing 1: Joins and Sorting R&G, Chapters 12, 13, 14 Lecture 8 One of the advantages of being disorderly is that one is constantly making exciting.
Query Optimization 3 Cost Estimation R&G, Chapters 12, 13, 14 Lecture 15.
6/27/20151 PSU’s CS External Sorting  Motivation  2-way External Sort: Memory, passes,cost  General External Sort: Memory, passes, cost  Optimizations.
1 External Sorting Chapter Why Sort?  A classic problem in computer science!  Data requested in sorted order  e.g., find students in increasing.
1 Evaluation of Relational Operations: Other Techniques Chapter 12, Part B.
External Sorting 198:541. Why Sort?  A classic problem in computer science!  Data requested in sorted order e.g., find students in increasing gpa order.
1 External Sorting for Query Processing Yanlei Diao UMass Amherst Feb 27, 2007 Slides Courtesy of R. Ramakrishnan and J. Gehrke.
External Sorting Chapter 13.. Why Sort? A classic problem in computer science! Data requested in sorted order  e.g., find students in increasing gpa.
Query Processing 2: Sorting & Joins
Lecture 11: DMBS Internals
BTrees & Sorting 11/3. Announcements I hope you had a great Halloween. Regrade requests were due a few minutes ago…
Sorting.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 External Sorting Chapter 13.
Database Management Systems, R. Ramakrishnan and J. Gehrke 1 External Sorting Chapter 13.
CPSC 404, Laks V.S. Lakshmanan1 External Sorting Chapter 13 (Sec ): Ramakrishnan & Gehrke and Chapter 11 (Sec ): G-M et al. (R2) OR.
CPSC 404, Laks V.S. Lakshmanan1 External Sorting Chapter 13: Ramakrishnan & Gherke and Chapter 2.3: Garcia-Molina et al.
1 External Sorting. 2 Why Sort?  A classic problem in computer science!  Data requested in sorted order  e.g., find students in increasing gpa order.
1 Database Systems ( 資料庫系統 ) December 7, 2011 Lecture #11.
DMBS Internals I. What Should a DBMS Do? Store large amounts of data Process queries efficiently Allow multiple users to access the database concurrently.
ZA classic problem in computer science! zData requested in sorted order ye.g., find students in increasing cap order zSorting is used in many applications.
B+ Trees: An IO-Aware Index Structure Lecture 13.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 B+-Tree Index Chapter 10 Modified by Donghui Zhang Nov 9, 2005.
Introduction to Database Systems1 External Sorting Query Processing: Topic 0.
CPSC Why do we need Sorting? 2.Complexities of few sorting algorithms ? 3.2-Way Sort 1.2-way external merge sort 2.Cost associated with external.
DMBS Internals I February 24 th, What Should a DBMS Do? Store large amounts of data Process queries efficiently Allow multiple users to access the.
DMBS Internals I. What Should a DBMS Do? Store large amounts of data Process queries efficiently Allow multiple users to access the database concurrently.
DMBS Architecture May 15 th, Generic Architecture Query compiler/optimizer Execution engine Index/record mgr. Buffer manager Storage manager storage.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 External Sorting Chapter 13.
Database Management Systems, R. Ramakrishnan and J. Gehrke1 External Sorting Chapter 11.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Tree-Structured Indexes Content based on Chapter 10 Database Management Systems, (3 rd.
External Sorting. Why Sort? A classic problem in computer science! Data requested in sorted order –e.g., find students in increasing gpa order Sorting.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Evaluation of Relational Operations Chapter 14, Part A (Joins)
External Sorting Jianlin Feng School of Software SUN YAT-SEN UNIVERSITY courtesy of Joe Hellerstein for some slides.
CS 405G: Introduction to Database Systems Instructor: Jinze Liu Fall 2007.
What Should a DBMS Do? Store large amounts of data Process queries efficiently Allow multiple users to access the database concurrently and safely. Provide.
1 Lecture 16: Data Storage Wednesday, November 6, 2006.
Database Systems (資料庫系統)
External Sorting Chapter 13
External Sorting Chapter 13 (Sec ): Ramakrishnan & Gehrke and
Database Management Systems (CS 564)
Lecture#12: External Sorting (R&G, Ch13)
External Sorting The slides for this text are organized into chapters. This lecture covers Chapter 11. Chapter 1: Introduction to Database Systems Chapter.
External Sorting Chapter 13
Selected Topics: External Sorting, Join Algorithms, …
CS222P: Principles of Data Management UCI, Fall 2018 Notes #09 External Sorting Instructor: Chen Li.
CS222: Principles of Data Management Lecture #10 External Sorting
External Sorting.
CS222P: Principles of Data Management Lecture #10 External Sorting
Database Systems (資料庫系統)
External Sorting Chapter 13
CS222/CS122C: Principles of Data Management UCI, Fall 2018 Notes #09 External Sorting Instructor: Chen Li.
External Sorting Dina Said
Presentation transcript:

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 External Sorting Chapters 13: 13.1—13.5

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke2 Why Sort?  A classic problem in computer science (See Knuth, v.3)!  Data requested in sorted order  e.g., find students in increasing gpa order  Sorting is first step in bulk loading B+ tree index.  Sorting useful for eliminating duplicate copies in a collection of records (Why?)  Sort-merge join algorithm involves sorting.  Problem: sort 1Gb of data with 1Mb of RAM.  why not virtual memory?

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke3 2-Way Merge Sort: Requires 3 Buffers  Pass 1: Read a page, sort it (in memory), write it.  only one buffer page is used  Pass 2, 3, …, etc.:  three buffer pages used. Main memory buffers INPUT 1 INPUT 2 OUTPUT Disk

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke4 2-Way Merge Sort: Algorithm proc two-way_extsort(file) // Given a file on disk, sort it using 3 buffer pages //Pass 0: produce 1-page runs Read each page of file into memory, sort it, and write it out. //Merge pairs of runs to produce longer runs until 1 run is left While # of runs at end of previous pass > 1 do : //Process passes i=1,2,… While there are runs to be merged from previous pass do : Pick next 2 runs from previous pass. Reach read each run into an input buffer, 1 page at a time. Merge the runs and write result to the output buffer by forcing output buffer to disk one page at a time. endproc

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke5 Two-Way External Merge Sort  Each pass we read + write each page in file => 2N I/O’s per pass.  N pages in the file => the number of passes  So total cost is:  Idea: Divide and conquer: sort subfiles and merge  Input file contains 7 pages; dark pages shows what would happen with 8 pages. Input file 1-page runs 2-page runs 4-page runs 8-page runs PASS 0 PASS 1 PASS 2 PASS 3 9 3,4 6,2 9,48,75,63,1 2 3,45,62,64,97,8 1,32 2,3 4,6 4,7 8,9 1,3 5,62 2,3 4,4 6,7 8,9 1,2 3,5 6 1,2 2,3 3,4 4,5 6,6 7,8

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke6 General External Merge Sort  To sort a file with N pages using B buffer pages:  Pass 0: use B buffer pages. Produce sorted runs of B pages each.  Pass 2, …, etc.: merge B-1 runs. B Main memory buffers INPUT 1 INPUT B-1 OUTPUT Disk INPUT 2... * More than 3 buffer pages. How can we utilize them?

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke7 General External Merge Sort: Algorithm proc extsort(file) // Given a file on disk, sort it using B buffer pages //Pass 0: produce B-pages runs Read B pages of file into memory, sort them, and write them out. //Merge B-1 runs to produce longer runs until 1 run is left While # of runs at end of previous pass > 1 do : //Process passes i=1,2,… While there are runs to be merged from previous pass do : Pick next B-1 runs from previous pass. Reach read each run into an input buffer, 1 page at a time. Merge the runs and write result to the output buffer by forcing output buffer to disk one page at a time. endproc

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke8 Cost of External Merge Sort  Number of passes:  Cost = 2N * (# of passes)  E.g., with 5 buffer pages, to sort 108 page file:  Pass 0: = 22 sorted runs of 5 pages each (last run is only 3 pages)  Pass 1: = 6 sorted runs of 20 pages each (last run is only 8 pages)  Pass 2: 2 sorted runs, 80 pages and 28 pages  Pass 3: Sorted file of 108 pages

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke9 Number of Passes of External Sort

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke10 I/O for External Merge Sort  … longer runs often means fewer passes!  Actually, do I/O a page at a time  In fact, read a block of pages sequentially!  Suggests we should make each buffer (input/output) be a block of pages.  But this will reduce fan-out during merge passes!  In practice, most files still sorted in 2-3 passes.  Typical DBMSs sort 1M records of size 100 bytes in 15 minutes

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke11 Number of Passes of Optimized Sort * Block size = 32, initial pass produces runs of size 2B.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke12 Double Buffering  To reduce wait time for I/O request to complete, can prefetch into `shadow block’.  Potentially, more passes; in practice, most files still sorted in 2-3 passes. OUTPUT OUTPUT' Disk INPUT 1 INPUT k INPUT 2 INPUT 1' INPUT 2' INPUT k' block size b B main memory buffers, k-way merge

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke13 Using B+ Trees for Sorting  Scenario: Table to be sorted has B+ tree index on sorting column(s).  Idea: Can retrieve records in order by traversing leaf pages.  Is this a good idea?  Cases to consider:  B+ tree is clustered Good idea!  B+ tree is not clustered Could be a very bad idea!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke14 Clustered B+ Tree Used for Sorting  Cost: root to the left- most leaf, then retrieve all leaf pages (Alternative 1)  If Alternative 2 is used? Additional cost of retrieving data records: each page fetched just once. * Always better than external sorting! (Directs search) Data Records Index Data Entries ("Sequence set")

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke15 Unclustered B+ Tree Used for Sorting  Alternative (2) for data entries; each data entry contains rid of a data record. In general, one I/O per data record! (Directs search) Data Records Index Data Entries ("Sequence set")

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke16 Summary  External sorting is important; DBMS may dedicate part of buffer pool for sorting!  External merge sort minimizes disk I/O cost:  Pass 0: Produces sorted runs of size B (# buffer pages). Later passes: merge runs.  # of runs merged at a time depends on B, and block size.  Larger block size => smaller # runs merged.  Clustered B+ tree is good for sorting; unclustered tree is usually very bad.