1. Motion in a straight line 2  3   Solving any problem first, see what are given data.  What quantity is to be found?  Find the relation between.

Slides:



Advertisements
Similar presentations
5.5 Section 4.6 – Related Rates
Advertisements

1 Related Rates Section Related Rates (Preliminary Notes) If y depends on time t, then its derivative, dy/dt, is called a time rate of change.
2.6 Related Rates.
Related Rates With our friend Student Tools
RELATED RATES PROBLEMS
Related Rates TS: Explicitly assessing information and drawing conclusions.
ITK-122 Calculus II Dicky Dermawan
Section 2.6 Related Rates.
4.6: Related Rates. First, a review problem: Consider a sphere of radius 10cm. If the radius changes 0.1cm (a very small amount) how much does the volume.
1. Read the problem, pull out essential information and identify a formula to be used. 2. Sketch a diagram if possible. 3. Write down any known rate of.
Section 2.8 Related Rates Math 1231: Single-Variable Calculus.
 A ladder 10m long rests against a vertical wall. If the bottom of the ladder slides away from the wall at a rate of 1m/s how fast is the top of the.
8. Related Rates.
DERIVATIVES Related Rates In this section, we will learn: How to compute the rate of change of one quantity in terms of that of another quantity.
2.6 Related Rates. Related Rate Problems General Steps for solving a Related Rate problem Set up: Draw picture/ Label now – what values do we know.
Definition: When two or more related variables are changing with respect to time they are called related rates Section 2-6 Related Rates.
Section 2.6 Related Rates Read Guidelines For Solving Related Rates Problems on p. 150.
Sec 2.6 – Marginals and Differentials 2012 Pearson Education, Inc. All rights reserved Let C(x), R(x), and P(x) represent, respectively, the total cost,
Related rates.
2.8 Related Rates.
1 Related Rates Finding Related Rates ● Problem Solving with Related Rates.
Related Rates Test Review
Aim: How do we find related rates when we have more than two variables? Do Now: Find the points on the curve x2 + y2 = 2x +2y where.
4.6 Related rates.
Review- 4 Rates of Change
Sec 3.4 Related Rates Problems – An Application of the Chain Rule.
Section 4.1: Related Rates Practice HW from Stewart Textbook (not to hand in) p. 267 # 1-19 odd, 23, 25, 29.
3.9 Related Rates 1. Example Assume that oil spilled from a ruptured tanker in a circular pattern whose radius increases at a constant rate of 2 ft/s.
Calculus warm-up Find. xf(x)g(x)f’(x)g’(x) For each expression below, use the table above to find the value of the derivative.
Warmup 1) 2). 4.6: Related Rates They are related (Xmas 2013)
APPLICATION OF DIFFERENTIATION AND INTEGRATION
Related Rates Greg Kelly, Hanford High School, Richland, Washington.
In this section, we will investigate the question: When two variables are related, how are their rates of change related?
2.6 Related Rates I. Volume changes-implicit With change in volume, volume, radius, and height of the volume in a cone all depend upon the time of the.
Section 4.6 Related Rates.
Related Rates. The chain rule and implicit differentiation can be used to find the rates of change of two or more related variables that are changing.
Related Rates. I. Procedure A.) State what is given and what is to be found! Draw a diagram; introduce variables with quantities that can change and constants.
Related Rates Section 4.6. First, a review problem: Consider a sphere of radius 10cm. If the radius changes 0.1cm (a very small amount) how much does.
Use implicit differentiation
4.1 - Related Rates ex: Air is being pumped into a spherical balloon so that its volume increases at a rate of 100cm 3 /s. How fast is the radius of the.
Chapter 5: Applications of the Derivative
RELATED RATES DERIVATIVES WITH RESPECT TO TIME. How do you take the derivative with respect to time when “time” is not a variable in the equation? Consider.
Section 6.6 Related Rates. 1. When a circular plate of metal is heated in an oven its radius increases at a rate of 0.01 cm/min. At what rate is the plate’s.
Related Rates.
Sec 4.1 Related Rates Strategies in solving problems: 1.Read the problem carefully. 2.Draw a diagram or pictures. 3.Introduce notation. Assign symbols.
RELATED RATES Example 1 Air is being pumped into a spherical balloon so that its volume increases at a rate of 100 cm3/s. How fast is the radius of the.
DO NOW Approximate 3 √26 by using an appropriate linearization. Show the computation that leads to your conclusion. The radius of a circle increased from.
5.8: Intermediate Related Rates. Sand is poured on a beach creating a cone whose radius is always equal to twice its height. If the sand is poured at.
Car A and B leave a town at the same time. Car A heads due north at a rate of 75km/hr and car B heads due east at a rate of 80 km/hr. How fast is the.
Warm Up Day two Write the following statements mathematically John’s height is changing at the rate of 3 in./year The volume of a cone is decreasing.
Calculus - Santowski 3/6/2016Calculus - Santowski1.
Related Rates ES: Explicitly assessing information and drawing conclusions.
Section 4.6 Related Rates. Consider the following problem: –A spherical balloon of radius r centimeters has a volume given by Find dV/dr when r = 1 and.
MCV4U1 (5.3) - Related Rates (Day 3) Ex.) A man starts walking north at a speed of 1.5m/s and a woman starting at the same point walks west at a speed.
Section 2.8 Related Rates. RELATED RATE PROBLEMS Related rate problems deal with quantities that are changing over time and that are related to each other.
Find if y 2 - 3xy + x 2 = 7. Find for 2x 2 + xy + 3y 2 = 0.
Related Rates. We have already seen how the Chain Rule can be used to differentiate a function implicitly. Another important use of the Chain Rule is.
Review Implicit Differentiation Take the following derivative.
Warm-up A spherical balloon is being blown up at a rate of 10 cubic in per minute. What rate is radius changing when the surface area is 20 in squared.
3.10 – Related Rates 4) An oil tanker strikes an iceberg and a hole is ripped open on its side. Oil is leaking out in a near circular shape. The radius.
Warm up 1. Calculate the area of a circle with diameter 24 ft. 2. If a right triangle has sides 6 and 9, how long is the hypotenuse? 3. Take the derivative.
MATH 1910 Chapter 2 Section 6 Related Rates.
Section 2-6 Related Rates
Hold on to your homework
Related Rates AP Calculus AB.
Section 2.6 Calculus AP/Dual, Revised ©2017
AGENDA: 1. Copy Notes on Related Rates and work all examples
Related Rates AP Calculus Keeper 26.
Related Rates ex: Air is being pumped into a spherical balloon so that its volume increases at a rate of 100cm3/s. How fast is the radius of the balloon.
Presentation transcript:

1

Motion in a straight line 2

 3

  Solving any problem first, see what are given data.  What quantity is to be found?  Find the relation between the point no. (1) & (2).  Differentiate and calculate for the final result. Algorithm 4

 Example1 An edge of a variable cube is increasing at the rate of 10cm/sec. How fast the volume of the cube is increasing when the edge is 5 cm long? 5

 Example 2: A stone is dropped into quiet lake and waves move in a circle at a speed of 3.5 cm/sec. At the instant when the radius of the circular wave is 7.5 cm. How fast is the enclosed area increasing? 6

 Example 3: A particle moves along the curve, 6y=x Find the points on the curve at which the y-coordinate is changing 8 times as fast as the x-coordinate 7

 Example 4: A man 2 meters high walks at a uniform speed of 6 meters per minute away from a lamp post, 5 meters high. Find the rate at which the length of his shadow increases. 8

 Example 5: A ladder 5m long is leaning against a wall. The bottom of the ladder is pulled along the ground away from the wall, at the rate of 2m/sec. How fast its height on the wall decreasing when the foot of the ladder is 4m away from the wall? 9

  A balloon which always remains spherical is being inflated by pumping in 900 cubic centimeters of gas per second. Find the rate at which the radius of the balloon is increasing when the radius is 15 cm.  A man 2 meters high walks at a uniform speed of 6Km/h away from a lamp-post 6 meters high. Find the rate at which the length of his shadow increases.  The surface area of a spherical bubble is increasing at the rate of 2cm 2 /sec. when the radius of the bubble is 6cm, at what rate is the volume of the bubble increasing? Exercise 10