The General Linear Model

Slides:



Advertisements
Similar presentations
Statistical Inference
Advertisements

The General Linear Model Christophe Phillips Cyclotron Research Centre University of Liège, Belgium SPM Short Course London, May 2011.
SPM Course Zurich, February 2012 Statistical Inference Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London.
1st level analysis - Design matrix, contrasts & inference
SPM Software & Resources Wellcome Trust Centre for Neuroimaging University College London SPM Course London, May 2011.
SPM Software & Resources Wellcome Trust Centre for Neuroimaging University College London SPM Course London, October 2008.
SPM for EEG/MEG Guillaume Flandin
Group Analyses Guillaume Flandin SPM Course Zurich, February 2014
Group analysis Kherif Ferath Wellcome Trust Centre for Neuroimaging University College London SPM Course London, Oct 2010.
SPM 2002 C1C2C3 X =  C1 C2 Xb L C1 L C2  C1 C2 Xb L C1  L C2 Y Xb e Space of X C1 C2 Xb Space X C1 C2 C1  C3 P C1C2  Xb Xb Space of X C1 C2 C1 
Group analyses of fMRI data Methods & models for fMRI data analysis in neuroeconomics November 2010 Klaas Enno Stephan Laboratory for Social and Neural.
The General Linear Model Or, What the Hell’s Going on During Estimation?
The General Linear Model (GLM) Methods & models for fMRI data analysis in neuroeconomics November 2010 Klaas Enno Stephan Laboratory for Social & Neural.
The General Linear Model (GLM)
The General Linear Model (GLM) SPM Course 2010 University of Zurich, February 2010 Klaas Enno Stephan Laboratory for Social & Neural Systems Research.
Classical (frequentist) inference Methods & models for fMRI data analysis 22 October 2008 Klaas Enno Stephan Branco Weiss Laboratory (BWL) Institute for.
Group analyses of fMRI data Methods & models for fMRI data analysis 28 April 2009 Klaas Enno Stephan Laboratory for Social and Neural Systems Research.
Multiple comparison correction Methods & models for fMRI data analysis 29 October 2008 Klaas Enno Stephan Branco Weiss Laboratory (BWL) Institute for Empirical.
Group analyses of fMRI data Methods & models for fMRI data analysis 26 November 2008 Klaas Enno Stephan Laboratory for Social and Neural Systems Research.
1st level analysis: basis functions and correlated regressors
SPM short course – May 2003 Linear Models and Contrasts The random field theory Hammering a Linear Model Use for Normalisation T and F tests : (orthogonal.
General Linear Model & Classical Inference Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM M/EEGCourse London, May.
The General Linear Model
With many thanks for slides & images to: FIL Methods group, Virginia Flanagin and Klaas Enno Stephan Dr. Frederike Petzschner Translational Neuromodeling.
SPM5 Tutorial Part 2 Tiffany Elliott May 10, 2007.
SPM Course Zurich, February 2015 Group Analyses Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London With many thanks to.
SPM short course – Oct Linear Models and Contrasts Jean-Baptiste Poline Neurospin, I2BM, CEA Saclay, France.
Group analyses of fMRI data Methods & models for fMRI data analysis November 2012 With many thanks for slides & images to: FIL Methods group, particularly.
FMRI GLM Analysis 7/15/2014Tuesday Yingying Wang
Wellcome Dept. of Imaging Neuroscience University College London
General Linear Model. Y1Y2...YJY1Y2...YJ = X 11 … X 1l … X 1L X 21 … X 2l … X 2L. X J1 … X Jl … X JL β1β2...βLβ1β2...βL + ε1ε2...εJε1ε2...εJ Y = X * β.
Contrasts & Statistical Inference
The General Linear Model (for dummies…) Carmen Tur and Ashwani Jha 2009.
FMRI Modelling & Statistical Inference Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM Course Chicago, Oct.
Idiot's guide to... General Linear Model & fMRI Elliot Freeman, ICN. fMRI model, Linear Time Series, Design Matrices, Parameter estimation,
The General Linear Model Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM fMRI Course London, May 2012.
SPM short – Mai 2008 Linear Models and Contrasts Stefan Kiebel Wellcome Trust Centre for Neuroimaging.
1 st level analysis: Design matrix, contrasts, and inference Stephane De Brito & Fiona McNabe.
The general linear model and Statistical Parametric Mapping I: Introduction to the GLM Alexa Morcom and Stefan Kiebel, Rik Henson, Andrew Holmes & J-B.
Variance components Wellcome Dept. of Imaging Neuroscience Institute of Neurology, UCL, London Stefan Kiebel.
The general linear model and Statistical Parametric Mapping II: GLM for fMRI Alexa Morcom and Stefan Kiebel, Rik Henson, Andrew Holmes & J-B Poline.
The General Linear Model Christophe Phillips SPM Short Course London, May 2013.
The General Linear Model Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM fMRI Course London, October 2012.
SPM short course – Mai 2008 Linear Models and Contrasts Jean-Baptiste Poline Neurospin, I2BM, CEA Saclay, France.
General Linear Model & Classical Inference Short course on SPM for MEG/EEG Wellcome Trust Centre for Neuroimaging University College London May 2010 C.
The General Linear Model …a talk for dummies
The General Linear Model (GLM)
Group Analyses Guillaume Flandin SPM Course London, October 2016
The General Linear Model (GLM)
The general linear model and Statistical Parametric Mapping
The General Linear Model
Design Matrix, General Linear Modelling, Contrasts and Inference
SPM short course at Yale – April 2005 Linear Models and Contrasts
Wellcome Trust Centre for Neuroimaging University College London
and Stefan Kiebel, Rik Henson, Andrew Holmes & J-B Poline
The General Linear Model (GLM)
Contrasts & Statistical Inference
The General Linear Model
Statistical Parametric Mapping
The general linear model and Statistical Parametric Mapping
The General Linear Model
Hierarchical Models and
The General Linear Model (GLM)
Contrasts & Statistical Inference
The General Linear Model
The General Linear Model (GLM)
WellcomeTrust Centre for Neuroimaging University College London
The General Linear Model
The General Linear Model
Contrasts & Statistical Inference
Presentation transcript:

The General Linear Model SPM for fMRI Course Peter Zeidman/Christophe Phillips Methods Group Wellcome Trust Centre for Neuroimaging

Overview Basics of the GLM Improving the model SPM files http://www.fil.ion.ucl.ac.uk/~pzeidman/teaching/GLM.ppt

Basics of the GLM

Statistical Inference Normalisation Image time-series Realignment Smoothing Anatomical reference Spatial filter Parameter estimates General Linear Model Design matrix Statistical Parametric Map Statistical Inference RFT p <0.05

A very simple fMRI experiment One session Passive word listening versus rest 7 cycles of rest and listening Blocks of 6 scans with 7 sec TR Question: Is there a change in the BOLD response between listening and rest?

Make inferences about effects of interest Modelling the measured data Make inferences about effects of interest Why? Decompose data into effects and error Form statistic using estimates of effects and error How? effects estimate linear model statistic data error estimate

= + + error 1 2 x1 x2 e Single voxel regression model Time BOLD signal

X y + = Mass-univariate analysis: voxel-wise GLM Model is specified by Design matrix X Assumptions about e N: number of scans p: number of regressors The design matrix embodies all available knowledge about experimentally controlled factors and potential confounds.

Voxel-wise time series analysis single voxel time series BOLD signal Time Model specification Parameter estimation Hypothesis Statistic SPM

Improving the model

What are the problems of this model? BOLD responses have a delayed and dispersed form. HRF The BOLD signal includes substantial amounts of low-frequency noise (eg due to scanner drift). Due to breathing, heartbeat & unmodeled neuronal activity, the errors are serially correlated. This violates the assumptions of the noise model in the GLM

 = Problem 1: Shape of BOLD response Solution: Convolution model HRF Expected BOLD Impulses  = expected BOLD response = input function impulse response function (HRF)

Convolution model of the BOLD response Convolve stimulus function with a canonical hemodynamic response function (HRF):  HRF

discrete cosine transform (DCT) set Problem 2: Low-frequency noise Solution: High pass filtering blue = data black = mean + low-frequency drift green = predicted response, taking into account low-frequency drift red = predicted response, NOT taking into account low-frequency drift discrete cosine transform (DCT) set

discrete cosine transform (DCT) set High pass filtering discrete cosine transform (DCT) set

Problem 3: Serial correlations with 1st order autoregressive process: AR(1) autocovariance function

= 1 + 2 V Q1 Q2 Multiple covariance components enhanced noise model at voxel i error covariance components Q and hyperparameters V Q1 Q2 = 1 + 2 Estimation of hyperparameters  with ReML (Restricted Maximum Likelihood).

Spm files

1.Specify the model

1.Specify the model

SPM files (after specifying the model)

SPM.mat (after specifying the model) SPM.xY – Filenames of fMRI volumes SPM.Sess – Per-session experiment timing SPM.xX – Design matrix For documentation on these structures, type: help spm_spm

SPM.xX (Design matrix) Design matrix imagesc(SPM.xX.X);

SPM.xX (Design matrix) Confounds (HPF) imagesc(SPM.xX.K.X0);

2. Estimate the model

SPM files (after estimation)

SPM files (after estimation) beta_0001.nii – beta_0004.nii mask.nii

SPM files (after estimation) ResMS.nii RPV.nii Residual variance estimate Estimated RESELS per voxel

SPM files (after estimation)

SPM files (after contrast estimation)

Summary We specify a general linear model of the data The model is combined with the HRF, high-pass filtered and serial correlations corrected The model is applied to every voxel, producing beta images. Next we’ll compare betas to make inferences http://www.fil.ion.ucl.ac.uk/~pzeidman/teaching/GLM.ppt