CLINICAL PHARMACOLOGY OF ANTIBACTERIAL AND ANTIVIRAL AGENTS

Slides:



Advertisements
Similar presentations
TREATMENT FOR SUPERIMPOSED PSEUDOMONAS AERUGINOSA INFECTION.
Advertisements

Chapter 20: Antimicrobial Drugs
Antibiotics.
Introduction to Antibiotics 1 st yr( Respiratory block) Prof. Azza Elmedany.
Antibiotics: Protein Synthesis, Nucleic Acid Synthesis and Metabolism.
CHEMOTHERAPY ANTIBIOTICS Chemical substances produced by microorganisms and have the capacity to inhibit or destroy other organisms. ANTIBIOTICS Chemical.
Antibiotics: Protein Synthesis, Nucleic Acid Synthesis and Metabolism.
PHL 424 Antimicrobials 1 st Lecture By Abdelkader Ashour, Ph.D. Phone:
Antibiotics By Dr. Humodi A. Saeed Associate Prof. of Medical Microbiology College of Medical Lab. Science Sudan University of Science and Technology E.
Pharmacology-1 PHL nd Term 9 th Lecture By Abdelkader Ashour, Ph.D. Phone:
PHL 521 Clinical Dental Therapeutics 1 st Lecture By Abdelkader Ashour, Ph.D. Phone:
CEPHALOSPORINS First used clinically in the early 1960’s. First used clinically in the early 1960’s. They have an important role in the modern treatment.
Antibiotics Review 10 August :39 AM.
CLINICAL PHARMACOLOGY OF ANTIBACTERIAL AGENTS
Antibiotics Biotechnology II. Univ S. Carolina Antibiotics Disrupt Cell Wall Synthesis, Protein Synthesis, Nucleic Acid Synthesis and Metabolism.
Antibiotic Mechanisms of Action and Resistance MLAB 2434 – Microbiology Keri Brophy-Martinez.
Β-Lactam antibiotics. Classification Penicillins Cephalosporins Other β-Lactam drugs Cephamycins (头霉素类) Carbapenems (碳青霉烯类) Oxacephalosporins (氧头孢烯类)
Non-pharmacologic Elevate the affected area to facilitate gravity drainage of edema and inflammatory substances – Patients with edema may benefit from.
Antibacterial Inhibitors of Cell Wall Synthesis –Very high therapeutic index Low toxicity with high effectiveness β- lactam Drugs –Inhibit peptidoglycan.
Control of microbial growth. Antimicrobial Classes Disinfectants –Products aimed at reducing by at least five powers of 10 (99,999 %) the number of microorganisms/virus.
Antimicrobial compounds Antiseptics and disinfectants Antibiotics.
Chapter 40 Aminoglycosides and Polymyxins Department of pharmacology Liu xiaokang( 刘小康) 2010,3.
AMINOGLYCOSIDES The different members of this group share many properties in common. The different members of this group share many properties in common.
THERAPY FOR ANAEROBIC INFECTIONS  Tissue necrosis and abscess formation are often seen in anaerobic infections.  Drainage and debridement together with.
Quinolones Folic Acid Antagonists Urinary Tract Antiseptics.
Antimicrobial Medications (Part I) Supplemental instruction Designed by Pyeongsug Kim ©2010 Fall 2010 For Dr. Wright’s Bio 7/27.
PHL 424 Antimicrobials 5 th Lecture By Abdelkader Ashour, Ph.D. Phone:
Clinical and pharmaceutical aspects of the use of antibacterial drugs in the clinic of internal diseases.
Ch 20: Antimicrobial Drugs ChemotherapyThe use of drugs to treat a disease Antimicrobial drugsInterfere with the growth of microbes within a host AntibioticSubstance.
Inhibiting Microbial Growth in vivo CLS 212: Medical Microbiology.
Introduction to Antibiotics 1 st yr( Respiratory block) Prof. Azza Elmedany.
Pharmacology Unit 2: Applied Surgical Pharmacology Elsevier items and derived items © 2006 by Saunders, an imprint of Elsevier Inc.
CLINICAL PHARMACOLOGY OF ANTIBACTERIAL AGENTS. Actions of antibacterial drugs on bacterial cells.
Introduction to Antibiotics 1 st yr( Respiratory block) Prof. Mohammad Alhumayyd Pharmacology Department Tel
1 ANTIMICROBIAL THERAPY CHAPTER Chemotherapeutic Agents Antibiotics: bacteriocidal vs bacteriostatic Synthetic Drugs vs natural product.
Hospital Acquired Pneumonia(HAP): is defined as a pneumonia which occurs after 48 hours of admission to hospital. Hospital Acquired Pneumonia(HAP): is.
DRUG THERAPY OF INFECTIOUS DISEASES. Classification of infectious diseases  According to onset and duration  According to location  According to item.
DENS 521 Clinical Dental Therapeutics 1 st Lecture By Abdelkader Ashour, Ph.D. Phone:
Antimicrobial drugs. Antimicrobial drugs are effective in the treatment of infections because of their selective toxicity (that is, they have the ability.
Chapter 21 Antimicrobial medications Biology 261 Prof. Santos Medgar Evers College.
Antimicrobials - Quinolones & Fluoroquinolones Antimicrobials - Quinolones & Fluoroquinolones Pharmacology -1 DSX 215 DSX 215 Dr/ Abdulaziz Saeedan Pharmacy.
Treatment Of Respiratory Tract infections. Prof. Azza ELMedany Department of Pharmacology Ext
Introduction to Antibiotics 1 st yr( Respiratory block) Prof. Azza Elmedany.
Dr. Laila M. Matalqah Ph.D. Pharmacology
 Antimicrobial agents share certain common properties.  We can learn much about how these agents work and why they sometimes do not work by considering.
Treatment of Respiratory Tract infections. Prof. Azza EL-Medany.
Antibiotics (anti-microbials)
PRINCIPLES OF ANTIBIOTIC THERAPY
Principles of Medical Science Pharmacology Review
CHEMOTHERAPY ANTIBIOTICS Chemical substances produced by microorganisms and have the capacity to inhibit or destroy other organisms. ANTIBIOTICS Chemical.
Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings PowerPoint ® Lecture Slide Presentation prepared by Christine L. Case M I C R.
DNA gyrase inhibitors Quinolones
Antibiotics By Alaina Darby.
Drugs used in Meningitis Prof. M. Alhumayyd
CHM 708 Anti-Bacterial Drugs.
Miscellaneous Antibiotics
Cell wall inhibitor Cephalosporins Dr. Naza M. Ali Lec D
Aminoglycosides.
Interior Health Pharmacy Resident Kootenay Lake Hospital
Lecture 1 Antimicrobial drugs.
By :Lecturer Nabeel Ahmed Al anbagi
CHEMOTHERAPY ANTIBIOTICS Chemical substances produced by microorganisms and have the capacity to inhibit or destroy other organisms . CHEMOTHERAPEUTIC.
Cephalosporin and Other Cell Wall Synthesis Inhibitors
Overview of Antimicrobials
Antimicrobial agents Antimicrobial agent is a chemical substance
Cephalosporin and Cell Wall Synthesis Inhibitors
Chapter 20 Antibacterial Agents
Cephalosporin and Cell Wall Synthesis Inhibitors
Principles of Antimicrobial Therapy
Other β-lactam A. Carbapenems:
Presentation transcript:

CLINICAL PHARMACOLOGY OF ANTIBACTERIAL AND ANTIVIRAL AGENTS

ANTIBACTERIAL DRUGS. Mechanisms of Action 1. Inhibition of bacterial cell wall synthesis or activation of enzymes that disrupt bacterial cell walls (eg, penicillins, cephalosporins, vancomycin) 2. Inhibition of protein synthesis by bacteria or production of abnormal bacterial proteins (eg, aminoglycosides, clindamycin, erythromycin, tetracyclines). These drugs bind irreversibly to bacterial ribosomes, intracellular structures that synthesize proteins. When antimicrobial drugs are bound to the ribosomes, bacteria cannot synthesize the proteins necessary for cell walls and other structures. 3. Disruption of microbial cell membranes (eg, antifungals) 4. Inhibition of organism reproduction by interfering with nucleic acid synthesis (eg, fluoroquinolones, rifampin, anti–acquired immunodeficiency syndrome antivirals) 5. Inhibition of cell metabolism and growth (eg, sulfonamides, trimethoprim)

Actions of antibacterial drugs on bacterial cells •

Beta-Lactam Antibiotics Penicillins The penicillins are classified as BETA-lactam drugs because of their unique four-membered lactam ring. They share features of chemistry, mechanism of action, pharmacologic and clinical effects, and immunologic characteristics with cephalosporins, monobactams, carbapenems, and -lactamase inhibitors, which also are -lactam compounds. A penicillin culture

PENICILLINS Indications for Use Clinical indications for use of penicillins include bacterial infections caused by susceptible microorganisms. As a class, penicillins usually are more effective in infections caused by gram-positive bacteria than those caused by gram-negative bacteria. However, their clinical uses vary significantly according to the subgroup or individual drug and microbial patterns of resistance. The drugs are often useful in skin/ soft tissue, respiratory, gastrointestinal, and genitourinary infections. However, the incidence of resistance among streptococci, staphylococci, and other microorganisms continues to grow.

Aminopenicillins

Piperacillin

Cephalosporins & Cephamycins Cephalosporins and cephamycins are similar to penicillins chemically, in mechanism of action, and in toxicity. Cephalosporins are more stable than penicillins to many bacterial β-lactamases and therefore usually have a broader spectrum of activity. Cephalosporins are not active against enterococci and Listeria monocytogenes.

Cephalosporins Indications for Use Cefepime is indicated for use in severe infections of the lower respiratory and urinary tracts, skin and soft tissue, female reproductive tract, and infebrile neutropenic clients. It may be used as monotherapy for all infections caused by susceptible organisms except P. aeruginosa; a combination of drugs should be used for serious pseudomonal infections.

Monobactams These are drugs with a monocyclic -lactam ring . They are relatively resistant to lactamases and active against gram-negative rods (including pseudomonas and serratia). They have no activity against gram-positive bacteria or anaerobes. Aztreonam is the only monobactam available in the USA. It resembles aminoglycosides in its spectrum of activity. Aztreonam is given intravenously every 8 hours in a dose of 1–2 g, providing peak serum levels of 100 g/mL. The half-life is 1–2 hours and is greatly prolonged in renal failure.

Beta-Lactamase Inhibitors (Clavulanic Acid, Sulbactam, & Tazobactam) These substances resemble beta-lactam molecules but themselves have very weak antibacterial action. They are potent inhibitors of many but not all bacterial lactamases and can protect hydrolyzable penicillins from inactivation by these enzymes.

carbapenems The carbapenems are structurally related to beta-lactam antibiotics. Ertapenem, imipenem, and meropenem are licensed for use in the USA. Imipenem has a wide spectrum with good activity against many gram-negative rods, it is administered together with an inhibitor of renal dehydropeptidase, cilastatin, for clinical use. Meropenem is not significantly degraded by renal dehydropeptidase and does not require an inhibitor. Ertapenem is less active than meropenem or imipenem against Pseudomonas aeruginosa and acinetobacter species. It is not degraded by renal dehydropeptidase.

Chloramphenicol Chloramphenicol is a potent inhibitor of microbial protein synthesis. It binds reversibly to the 50S subunit of the bacterial ribosome.

Chloramphenicol. Toxicity for Newborn Infants Newborn infants lack an effective glucuronic acid conjugation mechanism for the degradation and detoxification of chloramphenicol. Consequently, when infants are given dosages above 50 mg/kg/d, the drug may accumulate, resulting in the gray baby syndrome, with vomiting, flaccidity, hypothermia, gray color, shock, and collapse.

TETRACYCLINES

Macrolides Erythromycin Clarithromycin (is derived from erythromycin) Azithromycin (differs from erythromycin and clarithromycin mainly in pharmacokinetic properties). The drug is slowly released from tissues (tissue half-life of 2–4 days) to produce an elimination half-life approaching 3 days. These unique properties permit once-daily dosing and shortening of the duration of treatment in many cases. Ketolides (Telithromycin) is approved for clinical use. Many macrolide-resistant strains are susceptible to ketolides

Aminoglycosides Streptomycin, neomycin, kanamycin, amikacin, gentamicin, tobramycin, sisomicin, netilmicin The pharmacodynamic properties of aminoglycosides are: Concentration-dependent killing Significant post-antibiotic effect

Lincosamides Clindamycin is indicated for treatment of anaerobic infection caused by bacteroides and other anaerobes that often participate in mixed infections. Clindamycin is now recommended rather than erythromycin for prophylaxis of endocarditis in patients with valvular heart disease who are undergoing certain dental procedures. Clindamycin plus primaquine is an effective alternative to trimethoprim-sulfamethoxazole for moderate to moderately severe Pneumocystis jiroveci pneumonia in AIDS patients. It is also used in combination with pyrimethamine for AIDS-related toxoplasmosis of the brain.

Oxazolidinones Linezolid  is a member of the oxazolidinones, a new class of synthetic antimicrobials. It is active against gram-positive organisms including staphylococci, streptococci, enterococci, gram-positive anaerobic cocci, and gram-positive rods such as corynebacteria and Listeria monocytogenes.

Empirical ‘blind’ therapy Most antibiotic prescribing, especially in the community, is empirical. Even in hospital practice, microbiological documentation of the nature of an infection and the susceptibility of the pathogen is generally not available for a day or two. Initial choice of therapy relies on a clinical diagnosis and, in turn, a presumptive microbiological diagnosis. Such ‘blind therapy’ is directed at the most likely pathogen(s) responsible for a particular syndrome such as meningitis, urinary tract infection or pneumonia. Examples of ‘blind therapy’ for these three conditions are ceftriaxone, trimethoprim and amoxicillin + erythromycin, respectively. Initial therapy in the severely ill patient is often broad spectrum in order to cover the range of possible pathogens but should be targeted once microbiological information becomes available.

Sulfonamides Sulfonamides are infrequently used as single agents.

Sulfonamides. Oral Nonabsorbable Agents Sulfasalazine (salicylazosulfapyridine) is widely used in ulcerative colitis, enteritis, and other inflammatory bowel disease

Fluoroquinolones

Quinolones

Norfloxacin is the least active of the fluoroquinolones against both gram-negative and gram-positive organisms Ciprofloxacin, enoxacin, lomefloxacin, evofloxacin, ofloxacin, and pefloxacin comprise a second group of similar agents possessing excellent gram-negative activity and moderate to good activity against grampositive bacteria.

Gatifloxacin, moxifloxacin, sparfloxacin, and rovafloxacin comprise a third group of fluoroquinolones with improved activity against gram-positive organisms, particularly S.pneumoniae and to some extent staphylococci.

The fluoroquinolones side effects Fluoroquinolones are approved for use only in people older than 18. They can affect the growth of bones, teeth, and cartilage in a child or fetus.

The fluoroquinolones side effects Phototoxicity. Exposure to ultraviolet A rays from direct or indirect sunlight should be avoided during treatment and several days (5 days with sparfloxacin) after the use of the drug. The degree of phototoxic potential of fluoroquinolones is as follows: lomefloxacin > sparfloxacin > ciprofloxacin > norfloxacin = ofloxacin = levofloxacin = gatifloxacin = moxifloxacin.