RIEMANN SUMS AP CALCULUS MS. BATTAGLIA. Find the area under the curve from x = 0 to x = 35. The graph of g consists of two straight lines and a semicircle.

Slides:



Advertisements
Similar presentations
Section 8.5 Riemann Sums and the Definite Integral.
Advertisements

Lesson 5-1 Area Underneath the Curve. Quiz Homework Problem: Reading questions:
5.1 Estimating with Finite Sums Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 2002 Greenfield Village, Michigan.
THE DEFINITE INTEGRAL RECTANGULAR APPROXIMATION, RIEMANN SUM, AND INTEGRTION RULES.
A REA A PPROXIMATION 4-B. Exact Area Use geometric shapes such as rectangles, circles, trapezoids, triangles etc… rectangle triangle parallelogram.
5.1 Estimating with Finite Sums Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 2002 Greenfield Village, Michigan.
State Standard – 16.0a Students use definite integrals in problems involving area. Objective – To be able to use the 2 nd derivative test to find concavity.
Lets take a trip back in time…to geometry. Can you find the area of the following? If so, why?
Summation Notation Also called sigma notation
Chapter 5 – Integrals 5.1 Areas and Distances Dr. Erickson
Summation Notation Also called sigma notationAlso called sigma notation (sigma is a Greek letter Σ meaning “sum”) The series can be written.
Estimating with Finite Sums
5.1 Estimating with Finite Sums Greenfield Village, Michigan.
SECTION 5.1: ESTIMATING WITH FINITE SUMS Objectives: Students will be able to… Find distance traveled Estimate using Rectangular Approximation Method Estimate.
Time velocity After 4 seconds, the object has gone 12 feet. Consider an object moving at a constant rate of 3 ft/sec. Since rate. time = distance: If we.
A REA A PPROXIMATION 4-E Riemann Sums. Exact Area Use geometric shapes such as rectangles, circles, trapezoids, triangles etc… rectangle triangle parallelogram.
5.1 Estimating with Finite Sums Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 2002 Greenfield Village, Michigan.
Distance Traveled Area Under a curve Antiderivatives
5.1 Estimating with Finite Sums Distance Traveled – The distance traveled and the area are both found by multiplying the rate by the change in time. –
Area of a Plane Region We know how to find the area inside many geometric shapes, like rectangles and triangles. We will now consider finding the area.
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Prentice Hall Estimating with Finite Sums Section 5.1.
Section 7.6 – Numerical Integration. represents the area between the curve 3/x and the x-axis from x = 4 to x = 8.
5.1 Estimating with Finite Sums Objectives SWBAT: 1) approximate the area under the graph of a nonnegative continuous function by using rectangular approximation.
Rogawski Calculus Copyright © 2008 W. H. Freeman and Company Chapter 5: The Integral Section 5.1: Approximating and Computing Area Jon Rogawski Calculus,
Section 3.2 – Calculating Areas; Riemann Sums
Discuss how you would find the area under this curve!
Estimating area under a curve
Section 7.6 – Numerical Integration. represents the area between the curve 3/x and the x-axis from x = 4 to x = 8.
Ch. 6 – The Definite Integral
5.1 Estimating with Finite Sums. time velocity After 4 seconds, the object has gone 12 feet. Consider an object moving at a constant rate of 3 ft/sec.
Riemann Sums and The Definite Integral. time velocity After 4 seconds, the object has gone 12 feet. Consider an object moving at a constant rate of 3.
SECTION 4-2 (A) Application of the Integral. 1) The graph on the right, is of the equation How would you find the area of the shaded region?
AP CALC: CHAPTER 5 THE BEGINNING OF INTEGRAL FUN….
Riemann Sums and the Definite Integral. represents the area between the curve 3/x and the x-axis from x = 4 to x = 8.
Riemann Sums and Definite Integration y = 6 y = x ex: Estimate the area under the curve y = x from x = 0 to 3 using 3 subintervals and right endpoints,
Jacob Bernoulli 1654 – 1705 Jacob Bernoulli 1654 – 1705 Jacob Bernoulli was a Swiss mathematician who became familiar with calculus through a correspondence.
AP CALCULUS AB CHAPTER 4, SECTION 2(ISH) Area 2013 – 2014 Revised
5.1 Estimating with Finite Sums Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, 2002 Greenfield Village, Michigan.
Slide 5- 1 What you’ll learn about Distance Traveled Rectangular Approximation Method (RAM) Volume of a Sphere Cardiac Output … and why Learning about.
SECTION 4.2: AREA AP Calculus BC. LEARNING TARGETS: Use Sigma Notation to evaluate a sum Apply area formulas from geometry to determine the area under.
4.3: Definite Integrals Learning Goals Express the area under a curve as a definite integral and as limit of Riemann sums Compute the exact area under.
Definite Integrals, The Fundamental Theorem of Calculus Parts 1 and 2 And the Mean Value Theorem for Integrals.
Riemann Sums A Method For Approximating the Areas of Irregular Regions.
Re-cap Stay in your assigned seat Be respectful, do not be disruptive. Phones and iPods must be put away Be prepared, do not be lazy. The MHHS Student.
Application of the Integral
Chapter 5 Integrals 5.1 Areas and Distances
5.1 Estimating with Finite Sums
Riemann Sums and the Definite Integral
Riemann Sums Approximate area using rectangles
6-1 Estimating with finite sums
5.1 Estimating with Finite Sums
Ch. 6 – The Definite Integral
Section 5.1: Estimating with Finite Sums
4.2 Area Greenfield Village, Michigan
A Method For Approximating the Areas of Irregular Regions
5.1 Estimating with Finite Sums
AP Calc: Chapter 5 The beginning of integral fun…
Estimating with Finite Sums
Lesson 5-1: Estimating with Finite Sums
4.2/4.6 Approximating Area Mt. Shasta, California.
5.5 Area as Limits Greenfield Village, Michigan
5.1 Estimating with Finite Sums
Estimating with Finite Sums
5.1 Area.
Estimating with Finite Sums
Drill 80(5) = 400 miles 48 (3) = 144 miles a(t) = 10
§ 6.2 Areas and Riemann Sums.
5.1 Estimating with Finite Sums
6.1 Estimating with Finite Sums
Areas and Distances In this handout: The Area problem
Presentation transcript:

RIEMANN SUMS AP CALCULUS MS. BATTAGLIA

Find the area under the curve from x = 0 to x = 35. The graph of g consists of two straight lines and a semicircle.

time velocity After 4 seconds, the object has gone 12 feet. Consider an object moving at a constant rate of 3 ft/sec. Since rate. time = distance: If we draw a graph of the velocity, the distance that the object travels is equal to the area under the line.

If the velocity is not constant, we might guess that the distance traveled is still equal to the area under the curve. (The units work out.) Example: We could estimate the area under the curve by drawing rectangles touching at their left corners. This is called the Left-hand Rectangular Approximation Method (LRAM). Approximate area:

We could also use a Right-hand Rectangular Approximation Method (RRAM). Approximate area:

Another approach would be to use rectangles that touch at the midpoint. This is the Midpoint Rectangular Approximation Method (MRAM). Approximate area: In this example there are four subintervals. As the number of subintervals increases, so does the accuracy.

Approximate area: width of subinterval With 8 subintervals: The exact answer for this problem is.

Circumscribed rectangles are all above the curve: Inscribed rectangles are all below the curve:

EXAMPLE Use left and right endpoints and 4 rectangles to find two approximations of the area of the region between the graph of the function and the x-axis over the given interval.

HOMEWORK LRAM, RRAM, MRAM Worksheet