A. Kelić, S. Lukić, M. V. Ricciardi, K.-H. Schmidt GSI, Darmstadt, Germany and CHARMS Measurements and simulations of projectile and fission fragments.

Slides:



Advertisements
Similar presentations
The fission of a heavy fissile nucleus ( A, Z ) is the splitting of this nucleus into 2 fragments, called primary fragments A’ 1 and A’ 2. They are excited.
Advertisements

Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
Author: J R Reid Oxidation and Reduction – Introduction LEO goes GER Examples Balancing simple equations Why gain/lose electrons? Electronegativity.
Fragmentation of very neutron-rich projectiles around 132 Sn GSI experiment S294 Universidad de Santiago de Compostela, Spain Centre d’Etudes Nucleaires.
BEAM INTENSITIES WITH EURISOL M. Valentina Ricciardi GSI, Darmstadt, Germany.
Estimation of production rates and secondary beam intensities Martin Veselský, Janka Strišovská, Jozef Klimo Institute of Physics, Slovak Academy of Sciences,
The Nature of Molecules
Microscopic-macroscopic approach to the nuclear fission process
Fragmentation of very neutron-rich projectiles around 132 Sn GSI experiment S294 Universidad de Santiago de Compostela, Spain Centre d’Etudes Nucleaires.
Isotopically resolved residues produced in the fragmentation of 136 Xe and 124 Xe projectiles Daniela Henzlova GSI-Darmstadt, Germany on leave from NPI.
Ions Wednesday January 8, 2014
B-1 Fragmentation – 0 Introduction Generalities Isotopic distributions Neck emission Participant-spectator model Fragment separators LISE of GANIL FRS.
The ISOLDE yield database Measured secondary beams intensities at ISOLDE Pierre Delahaye for the ISOLDE collaboration EURISOL DS Task 11 kick-off meeting,
Aleksandra Kelić for the CHARMS collaboration§ GSI Darmstadt, Germany
Recent improvements in the GSI fission model
Spectator response to participants blast - experimental evidence and possible implications New tool for investigating the momentum- dependent properties.
Complex nuclear-structure phenomena revealed from the nuclide production in fragmentation reactions M. V. Ricciardi 1, A.V. Ignatyuk 2, A. Kelić 1, P.
Results of the de-excitation code ABLA07 GSI Darmstadt, Germany Aleksandra Kelić M. Valentina Ricciardi Karl-Heinz Schmidt.
M. Valentina Ricciardi GSI Darmstadt, Germany New London, June 15-20, 2008 Fragmentation Reactions: Recent Achievements and Future Perspective.
High-resolution experiments on projectile fragments – A new approach to the properties of nuclear matter A. Kelić 1, J. Benlliure 2, T. Enqvist 1, V. Henzl.
High-resolution experiments on nuclear fragmentation at the FRS at GSI M. Valentina Ricciardi GSI Darmstadt, Germany.
D. Henzlova a, M. V. Ricciardi a, J. Benlliure b, A. S. Botvina a, T. Enqvist a, A. Keli ć a, P. Napolitani a, J. Pereira b, K.-H. Schmidt a a GSI-Darmstadt,
EURISOL – Task 11 meeting 2007S. Chabod 1 OUR CONTRIBUTION INSIDE EURISOL TASK 11 OPTIMIZATION OF IN-TARGET NUCLEI YIELDS Target parameters: material (Al.
K.-H. Schmidt for the CHARMS collaboration Gesellschaft für Schwerionenforschung (GSI) Darmstadt, Germany Spallation Reactions - Physics and Applications.
Beam intensities with EURISOL Aleksandra Kelić, GSI-Darmstadt on behalf of the EURISOL DS Task 11 Participants and contributors: ISOLDE-CERN, CEA/Saclay,
Sub-task 4: Spallation and fragmentation reactions M. Valentina Ricciardi (GSI) in place of José Benlliure (USC) Sub-task leader: Universidad de Santiago.
High-precision mass measurements below 48 Ca and in the rare-earth region to investigate the proton-neutron interaction Proposal to the ISOLDE and NToF.
Aleksandra Keli ć for CHARMS Basic Research at GSI for the Transmutation of Nuclear Waste * * Work performed in the frame of the.
EVEN-ODD EFFECT IN THE YIELDS OF NUCLEAR-REACTION PRODUCTS
SECONDARY-BEAM PRODUCTION: PROTONS VERSUS HEAVY IONS A. Kelić, S. Lukić, M. V. Ricciardi, K.-H. Schmidt GSI, Darmstadt, Germany  Present knowledge on.
The de-excitation code ABLA07 Aleksandra Keli ć, Maria Valentina Ricciardi and Karl-Heinz Schmidt GSI Darmstadt, Germany.
Momentum distributions of projectile residues: a new tool to investigate fundamental properties of nuclear matter M.V. Ricciardi, L. Audouin, J. Benlliure,
Observation of new neutron-deficient multinucleon transfer reactions
M. Valentina Ricciardi GSI, Darmstadt THE ROLE OF NUCLEAR-STRUCTURE EFFECTS IN THE STUDY OF THE PROPERTIES OF HOT NUCLEAR MATTER.
EVIDENCE FOR TRANSIENT EFFECTS IN FISSION AND IMPORTANCE FOR NUCLIDE PRODUCTION B. Jurado 1,2, K.-H. Schmidt 1, A. Kelić 1, C. Schmitt 1, J. Benlliure.
Spectator response to the participant blast in the reaction 197 Au+ 197 Au at 1 A GeV – results of the first dedicated experiment V. Henzl for CHARMS collaboration.
Welcome to the CHARMS See – Tea Saturday, March 05, 2016 Comparison of ISOLDE yields with calculated in- target production rates Strahinja Lukić,
Aleksandra Kelić Gesellschaft für Schwerionenforschung (GSI) Darmstadt, Germany Experimental approaches to spallation reactions.
EVEN-ODD EFFECT IN THE YIELDS OF NUCLEAR-REACTION PRODUCTS M. Valentina Ricciardi GSI, Darmstadt, Germany.
Task 11.4: Spallation and fragmentation reactions David Pérez Loureiro Universidad de Santiago de Compostela, Spain Eurisol DS, Task 11 meeting,Helsinki.
Lecture 4 1.The role of orientation angles of the colliding nuclei relative to the beam energy in fusion-fission and quasifission reactions. 2.The effect.
Systematic Investigation of the Isotopic Distributions Measured in the Fragmentation of 124 Xe and 136 Xe Projectiles Daniela Henzlova GSI-Darmstadt, Germany.
March 18, 20051T11 – EURISOL meeting - GSI Aspects of secondary reactions in single- and double-stage targets (ST7) Goal:In-target Yield calculations for.
Comprehensive investigation of the decay losses in the ISOL extraction method KP2 Seminar, Strahinja Lukić.
M. Valentina Ricciardi GSI, Darmstadt ORIGIN OF THE EVEN-ODD EFFECT IN THE YIELDS FROM HIGH-ENERGY REACTIONS Its role in the study of the properties of.
S2 SCIENCE CHEMICAL REACTIONS
SMI-06 Workshop, Groningen,
A “standard” ISOLDE target: ThO2-184, n-rich Cu
Nuclear excitations in nucleon removal processes
Overview of the fragmentation mechanism
BEAM INTENSITIES WITH EURISOL
Periodensystem Biomaterials Research - Manfred Maitz H He Li Be B C N
Emission of Energy by Atoms and Electron Configurations
GSI-Darmstadt, Germany
Periodic Table of the Elements
Karl-Heinz Schmidt, Aleksandra Kelić, Maria Valentina Ricciardi
Speed Dating Speed Dating H Na Speed Dating Speed Dating K Be.
Intermediate-mass-fragment Production in Spallation Reactions
Daniela Henzlova for CHARMS collaboration GSI-Darmstadt, Germany
M. Valentina Ricciardi GSI, Darmstadt
The role of fission in the r-process nucleosynthesis
Electron Configurations
Edexcel Topic 1: Key concepts in chemistry
The Periodic Table Part I – Categories of Elements
Cross-Section Measurement of Very Light Fission Fragments Produced in Spallation Reactions of 238U at 1 A GeV M. V. Ricciardi1, K. -H. Schmidt1, F. Rejmund1,
NEW SIGNATURES ON DISSIPATION FROM THE STUDY OF
Microscopic-macroscopic approach to the nuclear fission process
Production Cross-Sections of Radionuclides in Proton- and Heavy Ion-Induced Reactions Strahinja Lukić.
Daniela Henzlova GSI-Darmstadt, Germany
Comparison of the isotopic distributions measured in the fragmentation of 136Xe and 124Xe projectiles with the EPAX parameterization Daniela Henzlova GSI-Darmstadt,
Presentation transcript:

A. Kelić, S. Lukić, M. V. Ricciardi, K.-H. Schmidt GSI, Darmstadt, Germany and CHARMS Measurements and simulations of projectile and fission fragments

CHARMS: Collaboration for High-Accuracy Experiments on Nuclear Reaction Mechanisms with magnetic Spectrometers Measurement and study of spallation, fission and fragmentation reactions Measurements (in inverse kinematics at the FRS, GSI): 56 Fe, 136,124 Xe, 112,124 Sn, 197 Au, 208 Pb, 238 U on 1,2 H, Be, Ti, Al, Au, Pb in the energy range MeV Cross sections and velocity distributions for the produced nuclei measured (about data points) Parallel development of simulation codes (INCL, ABRABLA)

A/Z from time and position: Z from IC: Once mass and charge are identified (A, Z are integer numbers) the velocity is measured from B  : Experiments data taken at the FRS, GSI Resolution: very precise measurement INVERSE KINEMATICS

Simulation code: ABRABLA // high-energy 238 U + p at 1 A GeV

89 Ac 90 Th 91 Pa 92 U Fission of secondary beams after the EM excitation: black - experiment (Schmidt et al, NPA 665 (2000)) red - ABLA x: Z of fission products y: cross section Simulation code: ABRABLA // low-energy

Present knowledge on nuclear-reaction mechanisms relevant for RIB production

Experimental data taken at the FRS at GSI  Spallation-evaporation produces nuclides reaching from the projectile to about 10 to 15 elements below (a few of them are neutron-rich, most of them are neutron-deficient)  Spallation-fission (from Th, U) produces neutron-rich nuclides up to Z=65. IMF (intermediate- mass fragments) Fission fragments Evaporation residues P. Napolitani J. Taieb, M. Bernas, V. Ricciardi Features of spallation reactions

The region on the chart of the nuclides covered by evaporation residues extends with increasing energy available in the system Experimental data taken at the FRS at GSI B. Fernandez T. Enqvist Energy dependence

Model Calculation (ABLA) K. H. Schmidt, A. Kelić Fission

MYRRHA

MYRRHA & co.

Specific and precise information on the efficiency, nucleus by nucleus (a job by itself) Profiting of the valuable database (*) of yields at ISOLDE, a work of Lukić (**) gives an Overview on the overall extraction efficiency (GSI) (*) H.-J. Kluge, Isolde users guide, CERN, Geneva, 1986, web: (**) "SYSTEMATIC COMPARISON OF ISOLDE-SC YIELDS WITH CALCULATED IN-TARGET PRODUCTION RATES" S. Lukic, F. Gevaert, A. Kelic, M. V. Ricciardi, K.-H. Schmidt, O. Yordanov Nucl. Instrum. Methods A 565 (2006) , arXiv nucl-ex/ Efficiencies

Correlation of ISOL yields with isotope half-life  Comparison of ISOLDE-SC yields to in-target production rates  Ratio yield/produced → overall extraction efficiency for the nuclide S. Lukić et al. Efficiencies

Same general behavior found in many cases. S. Lukić et al. Efficiencies

ISOLDE efficiency parameters from Lukic et al. Element Target Ion source epsilon_0 *) alpha t_0 Xi**2 Fr (Z=87) UCx W surface s Na (Z=11) UCx W surface s Na (Z=11) Ti(rod) W surface s K (Z=19) UCx W surface s 1.02 K (Z=19) Ti(rod) W surface s Rb (Z=37) UCx W surface s Cs (Z=55) UCx W surface s **) Rb (Z=37) Nb Ta surface s Cs (Z=55) La(molten) Ta surface s Mg (Z=12) Ta(foil) Hot plasma s 0.18 Ca (Z=20) Ti(rod) W surface (CF4) s 1.11 Sr (Z=38) Nb(foil) W surface (CF4) s 1.05 Sr (Z=38) UCx W surface s 0.95 Ba (Z=56) La(molten) W surface s 0.67 Ba (Z=56) UCx W surface s 0.97 Ra (Z=88) ThC W surface s 0.99 Ra (Z=88) UCx W surface s Cd (Z=48) UCx Plasma s Hg (Z=80) Pb(molten) Plasma s 0.65 Cl (Z=17) UCx Negative surface s Cl (Z=17) ThO2 Negative surface s Cl (Z=17) Ta/Nb powder Negative surface s 1.02 Br (Z=35) UCx Negative surface s 0.62 Br (Z=35) ThO2 Negative surface s Br (Z=35) Nb powder Negative surface s 1.03 I (Z=53) UCx Negative surface s I (Z=53) ThO2 Negative surface s I (Z=53) BaZrO3 Negative surface s At (Z=85) ThO2 Negative surface ( )E s 0.94 Ne (Z=10) CaO Plasma ( )E s Ne (Z=10) MgO Plasma ( )E s Ar (Z=18) CaO Plasma s Kr (Z=36) ThC Plasma s Xe (Z=54) ThC Plasma s 1

Ne (Z=10) CaO Plasma ( )E s Ne (Z=10) MgO Plasma ( )E s Na (Z=11) UCx W surface s Na (Z=11) Ti(rod) W surface s Mg (Z=12) Ta(foil) Hot plasma s 0.18 Cl (Z=17) UCx Negative surface s Cl (Z=17) ThO2 Negative surface s Cl (Z=17) Ta/Nb powder Negative surface s 1.02 Ar (Z=18) CaO Plasma s K (Z=19) UCx W surface s 1.02 K (Z=19) Ti(rod) W surface s Ca (Z=20) Ti(rod) W surface (CF4) s 1.11 Br (Z=35) UCx Negative surface s 0.62 Br (Z=35) ThO2 Negative surface s Kr (Z=36) ThC Plasma s Br (Z=35) Nb powder Negative surface s 1.03 Rb (Z=37) UCx W surface s Rb (Z=37) Nb Ta surface s Sr (Z=38) Nb(foil) W surface (CF4) s 1.05 Sr (Z=38) UCx W surface s 0.95 Cd (Z=48) UCx Plasma s I (Z=53) UCx Negative surface s I (Z=53) ThO2 Negative surface s I (Z=53) BaZrO3 Negative surface s Xe (Z=54) ThC Plasma s 1 Cs (Z=55) UCx W surface s **) Cs (Z=55) La(molten) Ta surface s Ba (Z=56) La(molten) W surface s 0.67 Ba (Z=56) UCx W surface s 0.97 Hg (Z=80) Pb(molten) Plasma s 0.65 At (Z=85) ThO2 Negative surface ( )E s 0.94 Fr (Z=87) UCx W surface s Ra (Z=88) ThC W surface s 0.99 Ra (Z=88) UCx W surface s *) The numbers cited here are the raw result of the fit. Of course, values larger than 1 are physically not possible. **) This fit result cannot be realistic. The reason for this problem is not clear. The parameters for Rb in UCx should be taken instead as a better guess for Cs.

CHARMS (Collaboration for High-Accuracy Experiments on Nuclear Reaction Mechanisms with magnetic Spectrometers) Knowledge on reaction mechanisms was gained in the last decade through high-precision experiments at the FRS. A strong effort on the development of simulation tools with high-physics content (  high predictive power): - in the energy range A MeV (nucleon-nucleus and nucleus-nucleus collisions) - de-excitation of a compound nucleus (e.g. neutron induced fission) You can visit our web page: (experimental data and publications are available there) You can ask for specific calculations. Conclusions