Магнитогидродинамические эффекты в задачах ориентации вращающихся космических аппаратов Борис Рабинович Институт Космических Исследований РАН Январь 2003.

Slides:



Advertisements
Similar presentations
UNIT 6 (end of mechanics) Universal Gravitation & SHM.
Advertisements

Study of Sloshing Effects, In Cylindrical Tanks
GN/MAE155B1 Orbital Mechanics Overview 2 MAE 155B G. Nacouzi.
ARO309 - Astronautics and Spacecraft Design Winter 2014 Try Lam CalPoly Pomona Aerospace Engineering.
The Beginning of Modern Astronomy
Torque, Equilibrium, and Stability
Институт прикладной математики им. М.В.Келдыша РАН Keldysh Institute of Applied Mathematics, Russian Academy of Sciences.
P. Axelrad, D. Lawrence ASEN3200 Spring 2006 ATTITUDE REPRESENTATION l Attitude cannot be represented by vector in 3-dimensional space, like position or.
Rotational Dynamics Chapter 9.
AAE450 Spring Lunar Descent Attitude Control Analysis Christine Troy Assistant Project Manager Webmaster Lunar Descent Attitude Control Analysis.
Physics 121 Newtonian Mechanics Lecture notes are posted on Instructor Karine Chesnel April 2, 2009.
1 Does Io have a dynamo? Yasong Ge. 2 Outline Overview of Io Overview of Io Io’s interior structure Io’s interior structure Io’s interaction with Jupiter’s.
Physics 1901 (Advanced) A/Prof Geraint F. Lewis Rm 557, A29
Semester Physics 1901 (Advanced) A/Prof Geraint F. Lewis Rm 560, A29
Rotational Motion Stability and Control.
International Colloquium and Workshop "Ganymede Lander: scientific goals and experiments"
Spring Topic Outline for Physics 1 Spring 2011.
Universal Gravitation
Kinetics of Particles:
Kinetic Effects on the Linear and Nonlinear Stability Properties of Field- Reversed Configurations E. V. Belova PPPL 2003 APS DPP Meeting, October 2003.
Four Forces of Flight Rocket Project Day 1. Aerodynamic Forces Act on a rocket as it flies through the air Lift & Drag Lift Force – Acts perpendicular.
Stress Fields and Energies of Dislocation. Stress Field Around Dislocations Dislocations are defects; hence, they introduce stresses and strains in the.
Global weak solutions of an initial boundary value problem for screw pinches in plasma physics Song Jiang Institute of Applied Physics and Computational.
Physics of Convection " Motivation: Convection is the engine that turns heat into motion. " Examples from Meteorology, Oceanography and Solid Earth Geophysics.
V.I. Vasiliev, Yu.A. Kostsov, K.M. Lobanov, L.P. Makarova, A.B. Mineev, D.V.Efremov Scientific Research Institute of Electrophysical Apparatus, St.-Petersburg,
EXCITATION OF VORTEX FLOWS IN PLANE LAYERS OF CONDUCTING FLUID BY ELECTRIC CURRENT OR ALTERNATING MAGNETIC FIELD S. Denisov, V. Dolgikh, R. Khalilov, S.
12/01/2014PHY 711 Fall Lecture 391 PHY 711 Classical Mechanics and Mathematical Methods 10-10:50 AM MWF Olin 103 Plan for Lecture 39 1.Brief introduction.
LESSON LD04 Aerodynamics
A PPLIED M ECHANICS Lecture 01 Slovak University of Technology Faculty of Material Science and Technology in Trnava.
Effect of Structure Flexibility on Attitude Dynamics of Modernizated Microsatellite.
Team 5 Moscow State University Department of Mechanics and Mathematics I.S. Grigoriev, M.P. Zapletin 3rd Global.
Stability Properties of Field-Reversed Configurations (FRC) E. V. Belova PPPL 2003 International Sherwood Fusion Theory Conference Corpus Christi, TX,
Dr. Wang Xingbo Fall , 2005 Mathematical & Mechanical Method in Mechanical Engineering.
Low Thrust Transfer to Sun-Earth L 1 and L 2 Points with a Constraint on the Thrust Direction LIBRATION POINT ORBITS AND APPLICATIONS Parador d'Aiguablava,
Space platform and Orbits Introduction to Remote Sensing Instructor: Dr. Cheng-Chien LiuCheng-Chien Liu Department of Earth Sciences National Cheng Kung.
Three-Dimensional MHD Simulation of Astrophysical Jet by CIP-MOCCT Method Hiromitsu Kigure (Kyoto U.), Kazunari Shibata (Kyoto U.), Seiichi Kato (Osaka.
Rigid Body Particle Object without extent Point in space Solid body with small dimensions.
Exploring Jupiter with Radio Waves W. S. Kurth The University of Iowa Iowa City, IA.
Saint-Petersburg State University V.I. Zubov Institute of Computational Mathematics and Control Processes Макеев Иван Владимирович Mathematical Methods.
1 TMR4225 Marine Operations, Part 2 Lecture content: –Linear submarine/AUV motion equations –AUV hydrodynamics –Hugin operational experience.
A Mathematical Frame Work to Create Fluid Flow Devices…… P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Development of Conservation.
Spring 2002 Lecture #21 Dr. Jaehoon Yu 1.Kepler’s Laws 2.The Law of Gravity & The Motion of Planets 3.The Gravitational Field 4.Gravitational.
SPIN STABILILIZATION 1. INTRODUCTION Z z x y Y X y Y Z z X x
RPWI Team Meeting, Sep. 2010, Roma Magnetic Loop Antenna (MLA) Scientific Objectives A. Marchaudon, V. Krasnoselskikh, T. Dudok de Wit, C. Cavoit,
Space physics EF2245 Tomas Karlsson Space and Plasma Physics School of Electrical Engineering EF2245 Space Physics 2010.
Relativistic MHD Simulations of jets Relativistic MHD Simulations of jets Abstract We have performed 3D RMHD simulations to investigate the stability and.
MAGNETISM Vocabulary Week 1. MAGNETISM a physical phenomenon produced by the motion of electric charge, resulting in attractive and repulsive forces between.
Concerning the rolling disturbance caused by the joint work of a rocket carriers LPR Engines Boris Rabinovich.
Optimal parameters of satellite–stabilizer system in circular and elliptic orbits 2nd International Workshop Spaceflight Dynamics and Control October 9-11,
INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 1)
24 January, 20011st NOZOMI_MEX Science Workshop, Jan, 2001 R. Lundin, M. Yamauchi, and H. Borg, Swedish Institute of Space Physics H. Hayakawa, M.
Celestial Mechanics VI The N-body Problem: Equations of motion and general integrals The Virial Theorem Planetary motion: The perturbing function Numerical.
FEASIBILITY ANALYS OF AN MHD INDUCTIVE GENERATOR COUPLED WITH A THERMO - ACOUSTIC ENERGY CONVERSION SYSTEM S. Carcangiu 1, R. Forcinetti 1, A. Montisci.
Applications of our understanding of ‘G’ Fields Calculate the gravitational potential at the surface of the Earth (Data on data sheet). Answer = Now state.
Space and Solar System Word wall. NASA National Aeronautics and Space Administration the federal agency that that deals with aeronautical research and.
LESSON LD04 Aerodynamics
M. Abishev, S.Toktarbay, A. Abylayeva and A. Talkhat
What is statics? Lecture 1
Lunar Trajectories.
Chapter 6 Equilibrium.
MAGNETOHYDRODYNAMIC INSTABILITY OF
Chapter 8. Magnetic forces, materials, and inductance
Draft Gravity: hierarchy of knowledge Gravitational force Solar system
LESSON LD04 Aerodynamics
Petroleum and Mining Engineering Department
Topic 6: Circular motion and gravitation 6
Try Lam Jet Propulsion Laboratory California Institute of Technology
College Physics, 7th Edition
LESSON LD04 Aerodynamics
Presentation transcript:

Магнитогидродинамические эффекты в задачах ориентации вращающихся космических аппаратов Борис Рабинович Институт Космических Исследований РАН Январь 2003

2 Аннотация Излагаются основные результаты теоретических и экспериментальных исследований, связанных с использованием магнитогидродинамических (МГД) эффектов в задачах стабилизации и ориентации вращающихся КА с деформируемыми элементами. Рассматривается новый принцип использования этих эффектов, основанный на идее «жидкого гироскопа» (вращающаяся тороидальная полость, частично заполненная электропроводной замагниченной жидкостью).

3 Предлагается использовать такого рода МГД- элементы для создания не требующих затрат рабочего тела, бесшарнирных систем ориентации и стабилизации вращающихся КА. МГД элементы новой конфигурации позволяют, в отличие от их первоначальной версии, реализовать постоянные и медленно меняющиеся управляющие моменты. При этом открываются широкие возможности включения в состав измерений не только интегрирующих акселерометров, но и солнечных датчиков

4 Автор благодарен ктн Алексею Гришину за большую работу по математическому моделированию и построению корневых годографов и кф-мн Виктории Прохоренко за подготовку электронной версии этого доклада

5 Stability of a rotating SC with a flexible element located along its rotation axis [1, 2]

6 Auroral Probe (INTERBALL project)

7 Mathematical model where

8 Stability condition where

9 Stability and instability domains for the rotating SC of the AP type: - - stability; + - instability (one unstable root); + + instability (two unstable roots)  II

10 Root loci of the second and third roots for the variable parameters  and  I

11 Mathematical simulation of the nutation of the gyro-stable AP- type SC (  0 = const = s -1 and  c = 0.06 s -1 ): (a) s is a vector locus corresponding to the mass m displacement by the strains of the flexible element; (b)  is a vector locus corresponding to the angular components of the SC s 

12 Mathematical simulation of the nuta tion of the gyro-unstable SC of the AP type (  0 = const = s -1 and  c = 0.03 s -1 ): (a) s is a vector locus corresponding to the mass m displacement by the strains of the flexible element; (b)  is a vector locus corresponding to the angular components of the SC s 

13 MHD-element Theory and experiment [3, 4]

14 The MHD- element of the torus shape completely filled with an electroconductive magnetized liquid

15 Stability of a rotating SC with MHD-element in the control loop [5, 6]

16 Mathematical model of a rotating SC with MHD control The root of the characteristic equations responsible for the stability

17 Stabilization of the gyro-stable SC of the AP- type with MHD elements and accelerometers. The mathematical simulation for  0 = const = s -1,  c = 0.06 s - 1 (a 0 = 2, a 1 = 3): (a) s is a vector locus corresponding to the mass m displacement by the strains of the flexible element; (b)  is a vector locus corresponding to the angular components of the SC s 

18 Stabilization of the gyro-unstable SC of the AP- type with MHD elements and accelerometers. The mathematical simulation for  0 = const = s -1,  c = 0.03 s -1 (a 0 = 2, a 1 = 3): (a) s is a vector locus corresponding to the mass m displacement by the strains of the flexible element; (b)  is a vector locus corresponding to the angular components of the SC s 

19 Facility for the experimental studying of the MHD-phenomena 1, 2, 3 – the rotating MHD-element

20 Experimental results - Theory - Experiment without magnetic field - Experiment with magnetic field The hydrodynamical moment acting on the torus during the slow braking of its rotation Amplitude and phase responses of I/V control loop - Theory - Experiment, A(f) - Experiment,  (f) , 

21 MHD-element for the attitude control and stabilization of a rotating spacecraft Some new ideas [7, 8, 9, 10]

22 Reminiscences concerning some problems of Rocket Carriers dynamics and stability The launches of N-1 heavy Rocket Carrier (RC) in the years 1969 – 1972 discovered the disturbing moment in the roll plane, caused by the twist of the Liquid Propellant Engines (LPE) jets combination around the longitudinal axis of the RC.

23 The heavy RC N-1 The view from the tail on the 30 LPE of the N-1 RC

24 The equilibrium forms of 8 interacting LPE jets a – The form with the regular symmetry b – The form with two planes of symmetry c - The form with screw symmetry

25 Mechanical models of the LPE jets forms presented in the previous slide a – The form with the regular symmetry b – The form with two planes of symmetry c - The form with the screw symmetry

26 The launch of N-1 RC 3-L

27 General comment to the slide 22 Analyzing the situation described above we see the arising in particular cases of the roll moment caused by a gas dynamical eccentricity of LPE jets. The moment is acting on a non rotating object (RC). We are looking forward to use the analogous phenomena for generating the pitch and yaw moments for the attitude control of the rotating SC. These moments must be in the contrary to the previous case under strict control. The point is that we can use for this purpose a hydro dynamical eccentricity with MHD control. Let us consider this problem more closely.

28 MHD effects in the Nature The forces acting on the elements of a rotating plasma torus Force lines of the Jovian magnetic field in the vicinity of the Io orbit Eccentric Jovian plasma torus including the Io moon’s orbit

29 Table 1. Parameters of Jupiter 1Radius R 0 [km] Period of self rotation T [hr]9. 9 3Gravitational acceleration on the planets equator g 0 [g] Strength of magnetic field on the planets equator μ 0 H 0 [Gauss] Eccentricity of dipole ε 0 [R 0 ] Inclination of dipole to the planets axis γ [deg] 9. 6

30 Table 2. Parameters of Jovian torus 1Radius r [R 0 ] MeanMinMax Mean eccentricity ε [r] Thickness h [r] MeanMinMax Mean strength of magnetic field μ 0 H [Gauss] Strength of magnetic field [μ 0 H] MeanMinMax

31 New MHD-element realizing the attitude control of a spinning SC Ferromagnetic magnet guide Electro conductive liquid Winding

32 Rotating SC with a new MHD-element Mathematical model Steady-state regime

33 MHD control of the three surface of the liquid

34 The fact of vital importance is that the system being under consideration has no hinges and does not need any special fuel expenses To confirm the new conception and to make the next step for its practical application we must fulfill a good deal of theoretical and experimental investigation.

35 References 1.Dokuchaev, L.V., Rabinovich, B.I. Analisis of Perturbed Motion near the Stability Boundary of a Rotating Spacecraft of the INTERBALL Auroral Probe Type, Cosmic Research, Vol. 37. No. 6, 1999, pp. 554 – Dokuchaev, L.V, Nazirov, R.R., Rabinovich, B.I., Ulyashin, A.I., On the Concordance of the Mathematical Model of Nutation of the Interball-2 Sattelite with a Flight Experiment. Cosmic Research, Vol. 38, No 5, 2000, pp. 454 – Rabinovich, B.I., Lebedev, V.G., Mytarev, A.I. Vortex Processes and Solid Body Dynamics. The Dynamic Problems of Spacecraft and Magnetic Levitation Systems. Kluwer Academic Publishers, Dordrecht, 1994, 296 p. 4.Churilov, G.A., Klishev, O.P., Mytarev, A.I., Rabinovich, B.I. Experimental Research of Toroidal Magnetohydrodynamic Element. Physical and Mathematical Models of Slow Breking Process, Scientific and technical journal «Polyot» («Flight»), No 9, 2001, pp. 21 – 27 (In Russian). 5.Dokuchaev, L.V., Rabinovich, B.I., Grishin, A.V. About the Stabilization of the Spacecraft with Deformable Elements Using the Magnetohydrodynamic Effects, Scientific and technical Journal «Polyot» («Flight»), No 7, 2000, pp. 21 – 27 (In Russian).

36 6. B.I. Rabinovich. Structural Control of a Rotating Spacecraft with Elastic Spike Antennas Using the Magnetohydrodynamic Control System. 3 rd International Workshop on Structural Control. Paris July 2000, pp Rabinovich, B.I., Prokhorenko., V.I. Concerning the rolling disturbance caused by the joint work of a Rocket Carriers LPR Engines, Preprint Space Research Institute Russian Academy of Sciences, Пр.-2023, 2000, Rabinovich, B.I. A Plasma Ring Rotating in a Gravitational.– Magnetic Field: The Stability Problem, Doklady Physics, Vol 44, No 7, 1999, pp. 482 – Rabinovich, B.I., Prokhorenko, V.I. A Spacecraft with a Liquid Stabilized by Rotation, Plasma Torus and Alfven`s Problem, Scientific and technical journal «Polyot» («Flight»), No 5, 1999, pp. 9 – 16 (In Russian). 10. B.I. Rabinovich. Some New Ideas of the Attitude Control Based on the Magnetohydrodynamic Phenomena. The Application to the Rotating Spacecraft. Astro2000, 11 CASI Conference on Astronautics, Ottawa, Canada, November 2000, p. 240a.