Engineering Systems Analysis for Design Richard de Neufville © Massachusetts Institute of Technology Capacity ExpansionSlide 1 of 28 Capacity Expansion.

Slides:



Advertisements
Similar presentations
Engineering Systems Analysis for Design Richard de Neufville © Massachusetts Institute of Technology Discounted Cash Flow Slide 1 of 16 Discounted Cash.
Advertisements

Dr. A. K. Dey1 Inventory Management, Supply Contracts and Risk Pooling Dr. A. K. Dey.
Engineering Systems Analysis for Design Richard de Neufville © Massachusetts Institute of Technology Asphalt vs. Concrete Example Slide 1 of 18 Asphalt.
Chapter 2 The Time Value of Money.
1 Chapter 11 The Basics of Capital Budgeting: Evaluating Cash Flows.
Engineering Systems Analysis Richard de Neufville © Massachusetts Institute of Technology Economic Evaluation Slide 1 of 22 Economic Evaluation l Objective.
Risk Management & Real Options II. The forecast is always wrong Stefan Scholtes Judge Institute of Management University of Cambridge MPhil Course
Example 14.3 Football Production at the Pigskin Company
Planning under Uncertainty
Chapter 8 Production and Costs
Economic Growth: The Solow Model
Dr. Imtithal AL-Thumairi Webpage: The Neoclassical Growth Model.
CHAPTER 11 © 2006 Prentice Hall Business Publishing Macroeconomics, 4/e Olivier Blanchard Saving, Capital Accumulation, and Output Prepared by: Fernando.
IE 3265 Production & Operations Management Slide Series 2.
Chapter 11: Saving, Capital Accumulation, and Output Copyright © 2009 Pearson Education, Inc. Publishing as Prentice Hall Macroeconomics, 5/e Olivier Blanchard.
FNCE 3020 Financial Markets and Institutions Lecture 5; Part 2 Forecasting with the Yield Curve Forecasting interest rates Forecasting business cycles.
British Columbia Institute of Technology
IE 3265 Production & Operations Management Slide Series 2.
Engineering Systems Analysis for Design Richard de Neufville © Massachusetts Institute of Technology Flaw of Averages Slide 1 of 29 Richard de Neufville.
Ch. 21: Production and Costs Del Mar College John Daly ©2003 South-Western Publishing, A Division of Thomson Learning.
Department of Economics and BusinessBIS Phuket
Copyright 2012 John Wiley & Sons, Inc. Chapter 7 Budgeting: Estimating Costs and Risks.
THE BUSINESS CYCLE.
The Time Value of Money.
Time Value of Money by Binam Ghimire
Generation Expansion Daniel Kirschen 1 © 2011 D. Kirschen and the University of Washington.
Summer Time Value of Money Session 2 07/02/2015.
Engineering Systems Analysis for Design Richard de Neufville © Massachusetts Institute of Technology Production Function Slide 1 of 34 Production Functions.
Economies of Scale Is Bigger Really Better?. Economies of Scale Economies of scale refers to the phenomena of decreased per unit cost as the number of.
Estimating Continuing Value Presented by Supatcharee Hengboriboonpong Kittanai Pongsak Chapter 12.
Economic Growth I CHAPTER 7.
1 FINC3131 Business Finance Chapter 5: Time Value of Money: The Basic Concepts.
Engineering Systems Analysis for Design Massachusetts Institute of Technology Richard de Neufville © Recognition of Uncertainty Slide 1 of 25 River Length.
ST-589: Climate Change and Carbon Sequestration Final Project Earl Reynolds.
PowerPoint presentation to accompany Heizer/Render - Principles of Operations Management, 5e, and Operations Management, 7e © 2004 by Prentice Hall, Inc.,
Monetary Theory and Business Cycles. From the very beginning of the option theory, it was considered as a part of much larger foundation. I like the beauty.
Example 2.5 Decisions Involving the Time Value of Money.
10/20/20151 HFT 4464 Chapter 7 Common Stock. 7-2 Chapter 7 Introduction  This chapter introduces common stocks including unique features that differentiate.
Chapter 7 The Cost of Production. ©2005 Pearson Education, Inc. Chapter 72 Topics to be Discussed Measuring Cost: Which Costs Matter? Cost in the Short.
Chapter 3 Growth and Accumulation Item Etc. McGraw-Hill/Irwin Macroeconomics, 10e © 2008 The McGraw-Hill Companies, Inc., All Rights Reserved.
Discounted Cash Flow Valuation. 2 BASIC PRINCIPAL Would you rather have $1,000 today or $1,000 in 30 years?  Why?
Engineering Systems Analysis for Design Richard de Neufville © Massachusetts Institute of Technology Engineering Economy Slide 1 of 13 Present Value, Discounted.
Engineering Systems Analysis for Design Massachusetts Institute of Technology Richard de Neufville © Hybrid Approach to Valuation Slide 1 of 24 Hybrid.
Mr. Henry Aggregate Supply Review from AD: What issues do you see in aggregate demand if people are saving more and spending less, thus a shift.
CHAPTER 5 COST OF PRODUCTION. PART 1: SHORT RUN PRODUCTION COST Chapter Summary Types of production cost in short run Apply the short run production cost.
Inventory Management and Risk Pooling (1)
Engineering Systems Analysis for Design Richard de Neufville © Massachusetts Institute of Technology Capacity ExpansionSlide 1 of 29 Capacity Expansion.
4-1 McGraw-Hill/Irwin Operations Strategy Copyright © 2008 The McGraw-Hill Companies, Inc. All rights reserved. Capacity Strategy Chapter 4.
Catalog of Operating Plans: The Quest for the Best ESD.71 Lecture Michel-Alexandre Cardin, PhD Candidate Engineering Systems Division December
Engineering Systems Analysis for Design Richard de Neufville © Massachusetts Institute of Technology Drypressing Cost Model Slide 1 of 8 Drypressing Cost.
Engineering Systems Analysis for Design Massachusetts Institute of Technology Richard de Neufville  Real Options SDMSlide 1 of 31 Richard de Neufville.
1 Chapter 5 – The Time Value of MoneyCopyright 2008 John Wiley & Sons MT 480 Unit 2 CHAPTER 5 The Time Value of Money.
Engineering Systems Analysis for Design Richard de Neufville © Massachusetts Institute of Technology Engineering Economy Slide 1 of 14 Present Value, Discounted.
Engineering Systems Analysis for Design Massachusetts Institute of Technology Richard de Neufville © Decision Analysis Basics Slide 1 of 21 Calculations.
© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
Engineering Systems Analysis for Design Richard de Neufville © Massachusetts Institute of Technology Marginal AnalysisSlide 1 of 25 Marginal Analysis Purposes:
Engineering Systems Analysis for Design Richard de Neufville  Massachusetts Institute of Technology Review for Mid-termSlide 1 of 14 Review of 1st half.
TEL2813/IS2820 Security Management Cost-Benefit Analysis Net Present Value Model, Internal Rate of Return Model Return on Investment (Based on Book by.
Richard de Neufville © Michael Benouaich Slide 1 of 16 Massachusetts Institute of Technology Engineering System Analysis for Design Valuation with Simulation.
1 Simple interest, Compound Interests & Time Value of Money Lesson 1 – Simple Interest.
Copyright 2015 John Wiley & Sons, Inc. Chapter 7 Budgeting: Estimating Costs and Risks.
Businesses and the Costs of Production Theory of the Firm I.
For Products and Services
Capital Investment Capital investment spending has an important effect on both the demand and supply side of the economy. This presentation considers the.
Capacity Expansion Objectives of Presentation:
Capacity Expansion Objectives of Presentation:
Continuous Growth and the Natural Exponential Function
Present Value, Discounted Cash Flow. Engineering Economy
Capacity Expansion Objectives of Presentation:
Presentation transcript:

Engineering Systems Analysis for Design Richard de Neufville © Massachusetts Institute of Technology Capacity ExpansionSlide 1 of 28 Capacity Expansion Objectives of Presentation: l Explore the theory governing economics of capacity expansion (builds on assignment) l Identify the fundamental tradeoffs l Illustrate the sensitivity of the results for optimal policy – in deterministic conditions l Provide a basis for understanding how results will change when future is uncertain

Engineering Systems Analysis for Design Richard de Neufville © Massachusetts Institute of Technology Capacity ExpansionSlide 2 of 28 The Issue l Given a system with known capacity l We anticipate growth in future years l The question is: What size of capacity addition minimizes present costs ?

Engineering Systems Analysis for Design Richard de Neufville © Massachusetts Institute of Technology Capacity ExpansionSlide 3 of 28 Consider “infinite” horizon l If growth is steady (e.g.: constant annual amount or percent), l Does optimal policy change over time? l Policy should not change -- Best policy now should be best at any other comparable time l If we need addition now, and find best to add for N years, then best policy for next time we need capacity will also be an N year addition l Best policy is a repetitive cycle

Engineering Systems Analysis for Design Richard de Neufville © Massachusetts Institute of Technology Capacity ExpansionSlide 4 of 28 Cost assumptions l Cost of Capacity additions is:  Cost = K (size of addition) a  If a < 1.0 we have economies of scale l Cost of a policy of adding for N years, C(N), of growth annual growth “  ” is:  Initial investment = K (N  ) a  Plus Present Values of stream of future additions. Value in N years is C(N), which we discount: C(N) = K (N  ) a + e - rN C(N)

Engineering Systems Analysis for Design Richard de Neufville © Massachusetts Institute of Technology Capacity ExpansionSlide 5 of 28 l This means exponent a = 1 l Thus for example l Present Value for cyclical payments in Excel is: = PV(DR over cycle beyond year 0, number of cycles, amount/cycle) l How does present cost vary over longer cycles? If Constant Returns to Scale

Engineering Systems Analysis for Design Richard de Neufville © Massachusetts Institute of Technology Capacity ExpansionSlide 6 of 28 Optimal policy in linear case l The general formula for the present value of a series of infinite constant amounts is: PV = (Constant Amount)[ 1 = 1 / (DR over period)] l In linear case:  Constant Amount = K (N  )  DR over period = N (annual DR)  PV = K(N  ) [1 + 1 / N (annual DR)] = = K(  ) [N + 1 / (annual DR)] l In this case, contributions of future cycles is irrelevant. Only thing that counts is first cost, which [ = f (N  )] that we minimize.

Engineering Systems Analysis for Design Richard de Neufville © Massachusetts Institute of Technology Capacity ExpansionSlide 7 of 28 Consider diseconomies of scale l In this case, it is always more expensive per unit of capacity to build bigger – that is meaning of diseconomies of scale l Thus, incentive to build smaller l Any countervailing force? l No ! l In this case, shortest possible cycle times minimize present costs

Engineering Systems Analysis for Design Richard de Neufville © Massachusetts Institute of Technology Capacity ExpansionSlide 8 of 28 … and economies of scale? l Economies of scale mean that bigger plants => cheaper per unit of capacity l Thus, incentive to build larger l Any countervailing force? l Yes! l Economies of scale are a power function so advantage of larger units decreases, while they cost more now l Best policy not obvious

Engineering Systems Analysis for Design Richard de Neufville © Massachusetts Institute of Technology Capacity ExpansionSlide 9 of 28 Manne’s analysis l Alan Manne developed an analytic solution for the case of constant linear growth l Reference: Manne, A. (1967) Investments for Capacity Expansion: Size, Location and Time- phasing, MIT Press, Cambridge, MA

Engineering Systems Analysis for Design Richard de Neufville © Massachusetts Institute of Technology Capacity ExpansionSlide 10 of 28 Here’s the picture (from Manne)

Engineering Systems Analysis for Design Richard de Neufville © Massachusetts Institute of Technology Capacity ExpansionSlide 11 of 28 Design implications l For industries with Economies of Scale, such as electric power, chemical processes l For conditions assumed (constant steady growth forever) …  Small plants (for small N) are uneconomical  Optimum size in range of between 5 and 10 years  Corresponding to maybe 30 to 50% expansion  Results not especially sensitive to higher N  Which is good because forecasts not accurate.

Engineering Systems Analysis for Design Richard de Neufville © Massachusetts Institute of Technology Capacity ExpansionSlide 12 of 28 What if assumptions wrong? (1) l Growth assumed “for ever” … l Is this always so? l Not always the case:  Fashion or technology changes  Examples –  Analog film -- once digital cameras came in  Land lines – once everyone had cell phones

Engineering Systems Analysis for Design Richard de Neufville © Massachusetts Institute of Technology Capacity ExpansionSlide 13 of 28 Optimal policy if growth stops l What is the risk? l Building capacity that is not needed l What can designer do about it? l Build smaller, so less reliance on future l What is the cost of this policy? l Tradeoff: extra cost/unit due to small plants, vs. saving by not paying for extra capacity

Engineering Systems Analysis for Design Richard de Neufville © Massachusetts Institute of Technology Capacity ExpansionSlide 14 of 28 What if assumptions wrong? (2) l Growth assumed steady…(no variability) l Is this always so? l Generally not correct.  Major economic cycles are common  Examples:  Airline industry  Consumer goods of all sorts  Industrial products….

Engineering Systems Analysis for Design Richard de Neufville © Massachusetts Institute of Technology Capacity ExpansionSlide 15 of 28 Optimal policy if growth varies l What is the risk? l Building capacity not needed for long time l What can designer do about it? l Build smaller, more agile response to future l What is the cost of this policy? l Tradeoff: extra cost/unit due to small plants, vs. saving by not paying for extra

Engineering Systems Analysis for Design Richard de Neufville © Massachusetts Institute of Technology Capacity ExpansionSlide 16 of 28 Example: Power in S. Africa l Eskom, power generator for South Africa, adopted Manne’s model in mid-1970s l They committed to units of 6 x 600 MW l This led them to over 40% overcapacity within 15 years – an economic disaster! l Aberdein, D. (1994) “Incorporating Risk into Power Station Investment Decisions in South Africa, S.M. Thesis, MIT, Cambridge, MA.

Engineering Systems Analysis for Design Richard de Neufville © Massachusetts Institute of Technology Capacity ExpansionSlide 17 of 28

Engineering Systems Analysis for Design Richard de Neufville © Massachusetts Institute of Technology Capacity ExpansionSlide 18 of 28 Why did oversupply persist? l Build up of oversupply was not sudden, lasted over a decade l Why did system managers let this happen? l Not clear. Some likely explanations:  Managers committed to plan – thus it was too shameful to admit error of fixed plan  They had locked themselves in contractually – no possibility to cancel or defer implementation l In any case, system was inflexible

Engineering Systems Analysis for Design Richard de Neufville © Massachusetts Institute of Technology Capacity ExpansionSlide 19 of 28 What could have been done? l They would have been better off (less unnecessary or premature construction) if they had:  not committed themselves to a fixed plan, but had signaled possibility of change  contractual flexibility to cancel orders for turbines, defer construction (they would have had to pay for this, of course)  Planned for smaller increments l In short, they should have been flexible

Engineering Systems Analysis for Design Richard de Neufville © Massachusetts Institute of Technology Capacity ExpansionSlide 20 of 28 General Cap. Expan. Problem l How should system designers “grow” the system over time? l Main tensions:  For early build – if economies of scale  For delays –  defer costs, lower present values  resolution of uncertainties l Need for flexible approach

Engineering Systems Analysis for Design Richard de Neufville © Massachusetts Institute of Technology Capacity ExpansionSlide 21 of 28 Summary l Capacity Expansion Issue is a central problem for System Design l Deterministic analysis offers insights into major tradeoffs between advantages of economies of scale and of deferral l In general, however, the uncertainties must be considered l A flexible approach is needed  How much? In what form? l This is topic for rest of class

Engineering Systems Analysis for Design Richard de Neufville © Massachusetts Institute of Technology Capacity ExpansionSlide 22 of 28 Appendix l Details on Calculations and results from Alan Manne l These replicate what you found in homework exercise (optimal capacity expansion)

Engineering Systems Analysis for Design Richard de Neufville © Massachusetts Institute of Technology Capacity ExpansionSlide 23 of 28 Applications of M’s Analysis l Still widely used l In industries that have steady growth l In particular in Electric power l See for example l Hreinsson, E. B. (2000) “Economies of Scale and Optimal Selection of Hydropower projects,” Proceedings, Electric Deregulation and Restructuring of Power Technologies, pp

Engineering Systems Analysis for Design Richard de Neufville © Massachusetts Institute of Technology Capacity ExpansionSlide 24 of 28 Details of Manne’s analysis (1) l Cost of Stream of replacement cycles is: C(N) = K (N  ) a + e - rN C(N) l Thus: C(N) = K (N  ) a / [ 1 - e - rN ] l This can be optimized with respect to N, decision variable open to system designer

Engineering Systems Analysis for Design Richard de Neufville © Massachusetts Institute of Technology Capacity ExpansionSlide 25 of 28 Details of Manne’s analysis (2) l It’s convenient to take logs of both sides log [C(N)] = log [K (N  ) a ] – log [ 1 - e - rN ] = log [N a ] + log [K (  ) a ] - log [ 1 - e - rN ] d(log [C(N)] ) / dN = a/N – r / [ e - rN - 1] = 0 l So: a = rN* / [ e – r N * - 1] l Optimal cycle time determined by (a, r) -- for assumed conditions

Engineering Systems Analysis for Design Richard de Neufville © Massachusetts Institute of Technology Capacity ExpansionSlide 26 of 28 Key results from Manne l There is an optimal cycle time… l It depends on  Economies of scale: lower “a”  longer cycle  Discount rate: higher DR  shorter cycle l It does not depend on growth rate! l Higher growth rate  larger units l However, this is driven by cycle time Capacity addition = (cycle time)(growth rate)

Engineering Systems Analysis for Design Richard de Neufville © Massachusetts Institute of Technology Capacity ExpansionSlide 27 of 28 Graphical View of Results l Manne’s present costs versus cycle time  steep for small cycle times  quite flat at bottom and for larger cycle times l See following figure… l What are implications?

Engineering Systems Analysis for Design Richard de Neufville © Massachusetts Institute of Technology Capacity ExpansionSlide 28 of 28 Sensitivity of results (Manne) l Total Cost vertically l Cycle Time, N, horizontally l Optimum is flat, around 6.75 years for a = 0.7 and r = 0.1 = 10%