SciBooNE experiment (実験の意義・目的と現状など)

Slides:



Advertisements
Similar presentations
Neutrinos from kaon decay in MiniBooNE Kendall Mahn Columbia University MiniBooNE beamline overview Kaon flux predictions Kaon measurements in MiniBooNE.
Advertisements

MiniBooNE: (Anti)Neutrino Appearance and Disappeareance Results SUSY11 01 Sep, 2011 Warren Huelsnitz, LANL 1.
フェルミ国立研における SciBooNE による ニュートリノ - 核子・原子核反応断面積の測定 東工大理, 京大理 A, KEK B, 東大宇宙線研 C 柴田利明, 宮地義之, 武居秀行, 中家剛 A, 横山将志 A, 田中秀和 A, 平出克樹 A, 栗本佳典 A, 中島康博 A, 石井孝 B, 田中真伸.
Experimental Observation Of Lepton Pairs Of Invariant Mass Around 95 GeV/c² At The CERN SPS Collider 不変質量 95 GeV/c² 近傍のレプトン対の実験的観測 Contents 1. Introduction.
MINERvA Overview MINERvA is studying neutrino interactions in unprecedented detail on a variety of different nuclei Low Energy (LE) Beam Goals: – Study.
9.線形写像.
5.連立一次方程式.
フーリエ係数の性質. どこまで足す? 理想的には無限大であるが、実際に はそれは出来ない これをフーリエ解析してみる.
1章 行列と行列式.
フーリエ級数. 一般的な波はこのように表せる a,b をフーリエ級数とい う 比率:
Excelによる積分.
計算のスピードアップ コンピュータでも、sin、cosの計算は大変です 足し算、引き算、掛け算、割り算は早いです
1 0章 数学基礎. 2 ( 定義)集合 集合については、 3セメスタ開講の「離散数学」で詳しく扱う。 集合 大学では、高校より厳密に議論を行う。そのために、議論の 対象を明確にする必要がある。 ある “ もの ” (基本的な対象、概念)の集まりを、 集合という。 集合に含まれる “ もの ” を、集合の要素または元という。
複素数.
1 0章 数学基礎. 2 ( 定義)集合 集合については、 3セメスタ開講の「離散数学」で詳しく扱う。 集合 大学では、高校より厳密に議論を行う。そのために、議論の 対象を明確にする必要がある。 ある “ もの ” (基本的な対象、概念)の集まりを、 集合という。 集合に含まれる “ もの ” を、集合の要素または元という。
信号測定. 正弦波 多くの場合正弦波は 0V の上下で振動する しかし、これでは AD 変換器に入れら れないので、オフ セットを調整して データを取った.
1 9.線形写像. 2 ここでは、行列の積によって、写像を 定義できることをみていく。 また、行列の積によって定義される写 像の性質を調べていく。
通信路(7章).
Bar-TOP における光の 群速度伝播の解析 名古屋大学 高エネルギー物理研究室 松石 武 (Matsuishi Takeru)
Analog “ neuronal ” networks in early vision Koch and Yuille et al. Proc Academic National Sciences 1986.
F.Sanchez (UAB/IFAE)ISS Meeting, Detector Parallel Meeting. Jan 2006 Low Energy Neutrino Interactions & Near Detectors F.Sánchez Universitat Autònoma de.
HKS Analysis Log Jul 2006 Part1 D.Kawama. 第壱部 HKS Sieve Slit Analysis.
Particle ID by range-scattering method T. Toshito(Nagoya univ.) Inspired by Takahashi’s yesterday presentation of fragments.
The Design of MINER  A Howard Budd University of Rochester August, 2004.
実験5 規則波 C0XXXX 石黒 ○○ C0XXXX 杉浦 ○○ C0XXXX 大杉 ○○ C0XXXX 高柳 ○○ C0XXXX 岡田 ○○ C0XXXX 藤江 ○○ C0XXXX 尾形 ○○ C0XXXX 足立 ○○
Cross-Section Measurement of Charged- Pion Photoproduction from Hydrogen and Deuterium 概略 JLab の Hall A で HRS を用いて、 γn→π - p と γp→π + n の反応 について、 E γ =1.1.
Self-efficacy(自己効力感)について
10/24/2005Zelimir Djurcic-PANIC05-Santa Fe Zelimir Djurcic Physics Department Columbia University Backgrounds in Backgrounds in neutrino appearance signal.
MINERvA Overview MINERvA is studying neutrino interactions in unprecedented detail on a variety of different nuclei Low Energy (LE) Beam Goals: – Study.
5/1/20110 SciBooNE and MiniBooNE Kendall Mahn TRIUMF For the SciBooNE and MiniBooNE collaborations A search for   disappearance with:
Recent results from the K2K experiment Yoshinari Hayato (KEK/IPNS) for the K2K collaboration Introduction Summary of the results in 2001 Overview of the.
K2K 実験 SciBar 前置ニュートリノ検出器 久野研 田窪 洋介 読み出しシステムと時間情報の較正.
たくさんの人がいっしょに乗れる乗り物を 「公共交通」といいます バスや電車 と 自動車 の よいところ と よくない ところ よいところ と よくない ところ を考えてみよう!
Preliminary Results from the MINER A Experiment Deborah Harris Fermilab on behalf of the MINERvA Collaboration.
MiniBooNE Cross Section Results H. Ray, University of Florida ICHEP Interactions of the future!
NuMI Off-Axis Experiment Alfons Weber University of Oxford & Rutherford Appleton Laboratory EPS2003, Aachen July 19, 2003.
Measurements of neutrino charged current scattering in K2K Fine-Grained Detector Introduction Introduction K2K Near Detector K2K Near Detector CC interactions.
1 Physics Requirements on Reconstruction and Simulation Software Jorge G. Morfín - Fermilab.
Heat flow measurement in shallow seas through long-term temperature monitoring Hamamoto Hideki (Earthquake Research Institute,Univ. of Tokyo) Yamano Makoto.
J-PARC Day-1 実験の状況・ 実験家から理論屋への要望 T.Takahashi (KEK) Contents 1. Aproved Exp. on J-PARC 2. How to produce S=-2 Systems 3. E05: (K-,K+) Spectroscopy.
NuFact02, July 2002, London Takaaki Kajita, ICRR, U.Tokyo For the K2K collab. and JHF-Kamioka WG.
21 Sep 2006 Kentaro MIKI for the PHENIX collaboration University of Tsukuba The Physical Society of Japan 62th Annual Meeting RHIC-PHENIX 実験における高横運動量領域での.
D.Kawama HES Simulation Log Nov ’06 Part2 1.VP Flux につい て 2.HES Acceptance 3.HES Tracking.
MULTI3D T. Anan. MULTI3D MULTI3D (Botnen 1997) Leenaarts & Carlsson 2009; Leenaarts et al – MPI-parallelized, domain-decomposed version.
Search for Sterile Neutrino Oscillations with MiniBooNE
Muon absolute flux measurement in anti-neutrino mode A.Ariga 1, C. Pistillo 1, S. Aoki 2 1 University of Bern, 2 Kobe University.
Magnetized hadronic calorimeter and muon veto for the K +   +  experiment L. DiLella, May 25, 2004 Purpose:  Provide pion – muon separation (muon veto)
1 Observation Of High-Energy Neutrino Reaction And The Existence Of Two Kinds Of Neutrinos 高エネルギーニュートリノの観測と二種類のニュートリノの存在 G. T. Danby et al. Phys. Rev.
Medium baseline neutrino oscillation searches Andrew Bazarko, Princeton University Les Houches, 20 June 2001 LSND: MeVdecay at rest MeVdecay in flight.
D. Harris Fermilab NuFact09 Neutrino Interactions: results by Neutrino 2012 and beyond Deborah Harris Fermilab Neutrino 2010 Athens June 18, 2010 Special.
Accelerator-based Long-Baseline Neutrino Oscillation Experiments Kam-Biu Luk University of California, Berkeley and Lawrence Berkeley National Laboratory.
April 26, McGrew 1 Goals of the Near Detector Complex at T2K Clark McGrew Stony Brook University Road Map The Requirements The Technique.
The MINER A Experiment Sacha Kopp, University of Texas at Austin on behalf of the Minerva Collaboration.
Nucleon Form Factor 作田 理論センター 1. Axial vector mass のまとめ 2. Quasi-elastic scattering の現状 3. Nucleon Form Factor の復習 4. まとめ= Axial vector form.
NUMI NUMI/MINOS Status J. Musser for the MINOS Collatoration 2002 FNAL Users Meeting.
HES-HKS & KaoS meeting. Contents Different distorted initial matrices Distorted matrix sample 6 (dist6) Distorted matrix sample 7 (dist7) Distorted matrix.
Status of the NO A Experiment Kirk Bays (Caltech) on behalf of the NO A collaboration Lake Louise Winter Institute Saturday, Feb 22, 2014.
Neutrino Interaction measurement in K2K experiment (1kton water Cherenkov detector) Jun Kameda(ICRR) for K2K collaboration RCCN international workshop.
Observation Gamma rays from neutral current quasi-elastic in the T2K experiment Huang Kunxian for half of T2K collaboration Mar. 24, Univ.
 CC QE results from the NOvA prototype detector Jarek Nowak and Minerba Betancourt.
Compton scattering and Klein-Nishina formula
MINERνA Overview  MINERνA is studying neutrino interactions in unprecedented detail on a variety of different nuclei  Low Energy (LE) Beam Goals: t Study.
Measuring Nuclear Effects with MINERnA APS April Meeting 2011 G. Arturo Fiorentini Centro Brasileiro de Pesquisas Físicas On behalf of the MINERnA collaboration.
J. Musser for the MINOS Collatoration 2002 FNAL Users Meeting
Status of the OPERA experiment
F.Sánchez for the K2K collaboration UAB/IFAE
Title : SciBooNE -- Experimental study of neutrino cross-sections for a long baseline neutrino oscillation experiment and the development of the detectors.
Neutrino interaction measurements in K2K SciBar
Impact of neutrino interaction uncertainties in T2K
Reaction Plane Calibration
Presentation transcript:

SciBooNE experiment (実験の意義・目的と現状など) Y.Hayato

1. Neutrino – nucleus scattering experiment ニュートリノ振動実験 ニュートリノと電子や核子散乱により生成した        荷電粒子(など)を観測することで行う。 シミュレーションプログラムを用いて期待される分布を求め、 データと比較することで振動パラメータを決定する。 できるだけ「正しい」シミュレーションプログラムが必要 反応標的として酸素や炭素などを用いる場合、 原子核であることの影響が大きい。 正確なモデル化を行うことも非常に難しい。 反応の詳細を実験データから知ることが必要 1)散乱断面積 a)反応の全散乱断面積 b)微分散乱断面積 2)生成粒子とそれらの運動量分布

2. Neutrino interactions above 100MeV Charged current quasi-elastic scattering m+ n →m- + p Neutral current elastic scattering m+ N →n + N Single p,h,K resonance productions nm+ N →l + N’ + p (h,K) Coherent pion productions nm+ X →l + X’ + p Deep inelastic scattering nm+ N →l + N’ + mp(h,K) n cross-sections (l : lepton, N,N’ : nucleon, m : integer) n cross-sections Total (NC+CC) CC Total CC Total s/E (10-38cm2/GeV) CC quasi-elastic DIS DIS (CC) CC single p NC single p0 En (GeV)

3. Existing n – nucleus scattering data Mainly from the bubble chamber experiments Bubble chamber is a very powerful detector. High efficiency in detecting even for low momentum charged particles. Limited by statistics. ( Scanned by eye, basically. )    A few tens to hundreds events. A few thousands events at most. m / charged p separation was rather difficult. p0 detection efficiency was not high. (ANL) (ANL) Also, the flux estimation has large uncertainties. Still, there seems to exist quite large uncertainties even in the current running experiments. Determination of the “absolute” cross-section is difficult.

3. Existing n – nucleus scattering data Recent experiments 1) K2K Water Cherenkov detector SciFi detector SciBar detector 2) MiniBooNE Mineral oil detector ( Mainly Cherenkov ) Ring imaging Cherenkov detector Large fiducial volume High efficiency for low momentum p0 Threshold for protons are so high. ( ~ GeV/c ) SciFi Water target tracking detector. Passive ( non-active ) volume is fairly large pions/protons stop in the passive region. High statistics & precise measurement is very important.

4.Existing neutrino beam line FNAL 8GeV Booster neutrino beam line Intense low energy neutrino beam Mean energy of neutrino flux 0.7GeV ( peak at 0.6GeV ) Neutrino beam flux @ SciBooNE hall (Neutrino flux) x (cross-section) nm: 92.9 % nm: 6.5 % ne: 0.6 % ne: 0.05% Mean En 1.1 GeV Peak En 0.8 GeV

4. Existing neutrino beam line FNAL 8GeV Booster neutrino beam line Possible to deliver both neutrino and anti-neutrino beams. There are only a few low energy anti-neutrino data available. Mean En ~ 0.6 GeV ( Peak En ~ 0.45 GeV ) Anti neutrino beam flux @ SciBooNE hall (Anti neutrino flux) x (cross-section) nm ~83% nm ~16% ne ~0.2% ne ~0.4% Average energy : 1.0GeV (nm + nm) 0.9GeV (nm only) nm ~63% nm ~36% ne ~0.4% ne ~0.6% Averaged r<2m 0.5 1 1.5 2 1 2 3 (GeV) (GeV)

4. Existing neutrino beam line FNAL 8GeV Booster neutrino beam line Energy spectrum is quite similar to the T2K neutrino beam. Precise study of neutrino interactions with this beam is expected to provide important information for the T2K experiment. Full active scintillator detector similar to SciBar will be used as a near detector of the T2K experiment. T2K FNAL 8GeV Booster delivers ~ 2 x 1020 protons to the target in a year of running. Flux (normalized by area) SciBooNE K2K 0.5 1 1.5 2 En (GeV)

Fermilab Visual Media Services 5. SciBooNE Experiment Bring the K2K-SciBar detector to the FNAL Booster neutrino beamline Booster Fermilab Visual Media Services SciBooNE Detector Target & Horn

5. Detectors of the SciBooNE experiment Muon Range Detector (MRD) 1) SciBar detector Neutrino interaction target Tracking detector 2) Electron catcher Spaghetti calorimeter Lead as converter 3) Muon range detector Sampling calorimeter Measure muon momentum SciBar n beam Electron Catcher (EC)

n 5. The SciBar detector Extruded scintillator 3m reconstruct vertex Full Active tracking detector Extruded scintillator with WLS fiber readout Cell size : 2.5 x 1.3 x 300cm3 Light yield :7~20p.e. /MIP/cm (2 MeV) reconstruct vertex identify the interaction Extruded scintillator (15t) 3m n Multi-anode PMT (64 ch.) 3m High efficiency even for the short tracks Can identify low momentum protons above ~ 450 MeV/c. 1.7m Wave-length shifting fiber PID (p/p) & momentum measurement by dE/dx.

5. The Electron Catcher “spaghetti” calorimeter used in CHORUS Fibers 1mm diameter fibers in the grooves of lead foils Readout Cell PMTs Each 4 x 4cm2 cell is read out from both ends 8 cm 4 cm 2 planes (11X0) Horizontal: 32 modules Vertical : 32 modules 262 cm n Beam Total 256 readout channels Expected energy resolution 14%/√E

5. Muon Range Detector (MRD) MRD built with used scintillators, iron plates and PMTs to measure the muon momentum up to 1.2 GeV/c. Iron Plates 305 x 274 x 5 cm3 Total 12 layers Scintillator Planes Alternating horizontal and vertical planes. Total 362 channels.

6. Expected interaction rates ( neutrino mode ) Beam time June 2007 ~ Summer 2008. Protons on target 1 x 1020 for neutrino 1 x 1020 for anti neutrino # of nm events [/10tons/1E20POT] Fraction CC-QE 41,100 41.0% CC-1pi 23,500 23.5% CC-coherent 1,500 1.5% CC-other 5,500 5.5% NC-1pi 8,500 8.5% NC-coherent 900 0.9% NC-other 1,700 1.7% NC-elastic 17,400 17.4% Dominant DIS etc. Small fraction

Neutrino interaction studies at SciBooNE 1. n quasi-elastic scattering (n + n -> m-+p) Dominant interaction mode 41K events (41%) 2 tracks 1 MIP and 1 large dE/dx tracks p Basically 2 body interaction m Incoming n direction is fixed. Real n event in K2K Expected direction of proton is calculated from observed m. Real SciBooNE Data

Neutrino interaction studies at SciBooNE 2. n quasi-elastic scattering ( n + p -> m+ + n ) Free proton scattering check of nuclear model Detected as a 1-track event in SciBar Excellent n energy and q2 resolution Expect ~9,000 CCQE events after cuts, 80% purity No data anti-nm CC-QE candidate (nm + p  m + n) Real SciBooNE Data

Neutrino interaction studies at SciBooNE 3. Single p production ( n + n -> m- + p + p+ etc ) Dominant background for nm disappearance At BNB energies Second dominant : CC1p+ T2K needs to reduce uncertainty of non-QE/QE ratio Currently ~20% Try to reduce less than 10%. p m nm disappearance measurement error (90%CL) d(sin2 2q) d(Dm2) stat. only d(nQE/QE)= 5% d(nQE/QE)=20%

Statistics : Sufficient for ~ 5% measurement Neutrino interaction studies at SciBooNE 3. CC Single p production ( n + n -> m- + p + p+ etc ) Expect ~2,800 CC-1p+ events after cuts m p m p p m 3 tracks 2 MIPs 1 large dE/dx 2 tracks 2 MIPs 2 tracks 1 MIP 1 large dE/dx Vertex activity cuts separate n+pm-pp+ from n+nm+np+ Statistics : Sufficient for ~ 5% measurement

Neutrino interaction studies at SciBooNE 4. NC Single p production ( n + n -> m- + p + p+ etc ) Dominant background to ne appearance For the 1st phase of T2K, need to reduce systematic error down to ~10%. s(n+pn+p+p0) T2K ne appearance sensitivity plot - stat. only - dBG=10% - dBG=20% sin2 2q13 sensitivity 10-2 Projected SciBar at K2K Projected SciBar at BooNE 1 2 3 4 5 Exposure /(22.5kt x yr)

Timeline of the SciBooNE experiment 2005 Summer Collaboration formed 2005 Dec. Proposal 2006 Jul. Detectors move to FNAL 2006 Sep. Groundbreaking 2006 Nov. EC assembly 2007 Feb. SciBar assembly 2007 Mar. MRD assembly 2007 Mar. Cosmic ray data taking 2007 Apr. Detector installation 2007 May. Commissioning 2007 Jun. Anti-neutrino beam run start 2008 Oct. Neutrino beam run start 2009 Apr.(?) Anti-neutrino beam run start 2009 July.(?) End of the data taking start In total ~ 1 year of data taking

Accumulated POT ( June 2007 ~ Dec. 2007 ) n mode ( June ~ Aug. 2007 ) n mode ( Oct. 2007 ~ ) Delivered POT: 5.45x1019 Detector live time fraction ~95% Analyzed POT : 4.3x1019

SciBar event selection criteria for the event rate and the other basic studies SciBar detector More than 3 hits in each view Threshold: 2 p.e Track length > 4 layers Vertex in fiducial volume -130cm<x<130cm -130cm<y<130cm 2.62cm<z<157.2cm (2nd~60th layer) Require hit in the most downstream layer Within 2msec on-timing window Longest track vertex Fiducial volume

MRD event selection criteria for the event rate and the other basic studies Scintillator Iron plate n beam veto Require at least 4 planes Fiducial Volume(9 iron planes) muon Reconstruction Hits on 4 scintillator planes are required ( 2vertical, 2horizontal) Fiducial Volume -132cm < X < 132cm -110cm < Y < 110cm 9 iron planes (thickness of 1plane ~2inch) FV mass ~ 21.1ton Timing Cluster within 2msec time window is selected

Event displays TOP view SIDE view Real SciBooNE Data 3-track event

Event rate ( Summer 2007 anti-neutrino run ) Period: Jun. 12 - Jul. 28 +/-10% CC candidate events in SciBar ~ 5000 events (FV ~10.6 tons) CC candidate events in SciBar VERY PRELIMINARY 6/19 6/16 6/23 6/30 7/ 7 7/14 7/21 7/28 +/-10% CC candidate events in MRD ~10000 events (FV~19 tons) CC candidate events in MRD VERY PRELIMINARY 6/19 6/16 6/23 6/30 7/ 7 7/14 7/21

PRELIMINARY PRELIMINARY Event rate ( Autumn 2007 neutrino run ) CC candidate events in SciBar ~ 20000 events (FV~10 tons) CC candidate events in MRD ~ 50000 events (FV~21 tons) CC candidate events in SciBar CC candidate events in MRD c2 / ndf = 7.591 / 7 c2 / ndf = 15.4 / 7 PRELIMINARY PRELIMINARY Oct.20 Nov.03 Nov.17 Dec.01 Oct.27 Nov.10 Nov.24 Dec.8 Oct.20 Nov.03 Nov.17 Dec.01 Oct.27 Nov.10 Nov.24 Dec.8

Summary SciBooNE experiment will provide high statistics and high precision neutrino interaction data. Neutrino interaction measurement CC 1 p+ production NC p0 production ~ 10% precision Data taking was started in June 2007. Summer 2007 Anti neutrino run ~ 5 x 1019 POT Autumn 2007 Neutrino run ~ 5 x 1019 POT Data taking will complete in Summer 2008.