11/14/2007NSU, Singapore Dipolar Quantum Gases: Bosons and Fermions Han Pu 浦晗 Rice University, Houston, TX, USA Dipolar interaction in quantum gases Dipolar.

Slides:



Advertisements
Similar presentations
Creating new states of matter:
Advertisements

Trapped ultracold atoms: Bosons Bose-Einstein condensation of a dilute bosonic gas Probe of superfluidity: vortices.
Rotations and quantized vortices in Bose superfluids
Ultracold Quantum Gases: An Experimental Review Herwig Ott University of Kaiserslautern OPTIMAS Research Center.
Coherence, Dynamics, Transport and Phase Transition of Cold Atoms Wu-Ming Liu (刘伍明) (Institute of Physics, Chinese Academy of Sciences)
Ultracold Alkali Metal Atoms and Dimers: A Quantum Paradise Paul S. Julienne Atomic Physics Division, NIST Joint Quantum Institute, NIST/U. Md 62 nd International.
Universal Thermodynamics of a Unitary Fermi gas Takashi Mukaiyama University of Electro-Communications.
World of ultracold atoms with strong interaction National Tsing-Hua University Daw-Wei Wang.
World of zero temperature --- introduction to systems of ultracold atoms National Tsing-Hua University Daw-Wei Wang.
Fluctuations in Strongly Interacting Fermi Gases Christian Sanner, Jonathon Gillen, Wujie Huang, Aviv Keshet, Edward Su, Wolfgang Ketterle Center for Ultracold.
Bose-Fermi solid and its quantum melting in a one-dimensional optical lattice Bin Wang 1, Daw-Wei Wang 2, and Sankar Das Sarma 1 1 CMTC, Department of.
Competing instabilities in ultracold Fermi gases $$ NSF, AFOSR MURI, DARPA ARO Harvard-MIT David Pekker (Harvard) Mehrtash Babadi (Harvard) Lode Pollet.
Strongly Correlated Systems of Ultracold Atoms Theory work at CUA.
Temperature scale Titan Superfluid He Ultracold atomic gases.
Nonequilibrium dynamics of bosons in optical lattices $$ NSF, AFOSR MURI, DARPA, RFBR Harvard-MIT Eugene Demler Harvard University.
Ultracold Fermi gases : the BEC-BCS crossover Roland Combescot Laboratoire de Physique Statistique, Ecole Normale Supérieure, Paris, France.
Stability of a Fermi Gas with Three Spin States The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites Yi Zhang John Huckans.
New physics with polar molecules Eugene Demler Harvard University Outline: Measurements of molecular wavefunctions using noise correlations Quantum critical.
Lecture II Non dissipative traps Evaporative cooling Bose-Einstein condensation.
ULTRACOLD COLLISIONS IN THE PRESENCE OF TRAPPING POTENTIALS ZBIGNIEW IDZIASZEK Institute for Quantum Information, University of Ulm, 18 February 2008 Institute.
University of Trento INFM. BOSE-EINSTEIN CONDENSATION IN TRENTO SUPERFLUIDITY IN TRAPPED GASES University of Trento Inauguration meeting, Trento
Dynamics of Quantum- Degenerate Gases at Finite Temperature Brian Jackson Inauguration meeting and Lev Pitaevskii’s Birthday: Trento, March University.
System and definitions In harmonic trap (ideal): er.
T. Koch, T. Lahaye, B. Fröhlich, J. Metz, M. Fattori, A. Griesmaier, S. Giovanazzi and T. Pfau 5. Physikalisches Institut, Universität Stuttgart Assisi.
Ultracold Fermi gases University of Trento BEC Meeting, Trento, 2-3 May 2006 INFM-CNR Sandro Stringari.
Han Pu Rice University Collaborators: Lei Jiang (NIST/JQI) Hui Hu, Xia-Ji Liu (Swinburne) Yan Chen (Fudan U.) 2013 Hangzhou Workshop on Quantum Matter.
Dynamics of phase transitions in ion traps A. Retzker, A. Del Campo, M. Plenio, G. Morigi and G. De Chiara Quantum Engineering of States and Devices: Theory.
Many-body quench dynamics in ultracold atoms Surprising applications to recent experiments $$ NSF, AFOSR MURI, DARPA Harvard-MIT Eugene Demler (Harvard)
Few-body physics with ultracold fermions Selim Jochim Physikalisches Institut Universität Heidelberg.
Quantum Monte Carlo methods applied to ultracold gases Stefano Giorgini Istituto Nazionale per la Fisica della Materia Research and Development Center.
Collective excitations in a dipolar Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Former PhD.
Critical stability of a dipolar Bose-Einstein condensate: Bright and vortex solitons Sadhan K. Adhikari IFT - Instituto de Física Teórica UNESP - Universidade.
E. Kuhnle, P. Dyke, M. Mark, Chris Vale S. Hoinka, Chris Vale, P. Hannaford Swinburne University of Technology, Melbourne, Australia P. Drummond, H. Hu,
Polar molecules in optical lattices Ryan Barnett Harvard University Mikhail Lukin Harvard University Dmitry Petrov Harvard University Charles Wang Tsing-Hua.
Correlated States in Optical Lattices Fei Zhou (PITP,UBC) Feb. 1, 2004 At Asian Center, UBC.
Symmetry Breaking in Scalar, Spinor, and Rotating Bose-Einstein condensates Hiroki Saito FB18 Aug. 24, 2006 Univ. of Electro-Communications, Japan Tokyo.
Physics and Astronomy Dept. Kevin Strecker, Andrew Truscott, Guthrie Partridge, and Randy Hulet Observation of Fermi Pressure in Trapped Atoms: The Atomic.
Strong correlations and quantum vortices for ultracold atoms in rotating lattices Murray Holland JILA (NIST and Dept. of Physics, Univ. of Colorado-Boulder)
Theory of interacting Bose and Fermi gases in traps Sandro Stringari University of Trento Crete, July 2007 Summer School on Bose-Einstein Condensation.
Lecture IV Bose-Einstein condensate Superfluidity New trends.
Stability and collapse of a trapped degenerate dipolar Bose or Fermi gas Sadhan K. Adhikari IFT - Instituto de Física Teórica UNESP - Universidade Estadual.
Collaborations: L. Santos (Hannover) Former members: R. Chicireanu, Q. Beaufils, B. Pasquiou, G. Bismut A.de Paz (PhD), A. Sharma (post-doc), A. Chotia.
The Equilibrium Properties of the Polarized Dipolar Fermi Gases 报告人:张静宁 导师:易俗.
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Study of the LOFF phase diagram in a Ginzburg-Landau approach G. Tonini, University of Florence, Florence, Italy R. Casalbuoni,INFN & University of Florence,
The anisotropic excitation spectrum of a chromium Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Sorbonne Paris Cité Villetaneuse.
Atoms in optical lattices and the Quantum Hall effect Anders S. Sørensen Niels Bohr Institute, Copenhagen.
1 Bose-Einstein condensation of chromium Ashok Mohapatra NISER, Bhubaneswar.
Optical lattices for ultracold atomic gases Sestri Levante, 9 June 2009 Andrea Trombettoni (SISSA, Trieste)
Condensed matter physics in dilute atomic gases S. K. Yip Academia Sinica.
B. Pasquiou (PhD), G. Bismut (PhD) B. Laburthe, E. Maréchal, L. Vernac, P. Pedri, O. Gorceix (Group leader) Spontaneous demagnetization of ultra cold chromium.
D. Jin JILA, NIST and the University of Colorado $ NIST, NSF Using a Fermi gas to create Bose-Einstein condensates.
Bogoliubov-de Gennes Study of Trapped Fermi Gases Han Pu Rice University (INT, Seattle, 4/14/2011) Leslie Baksmaty Hong Lu Lei Jiang Randy Hulet Carlos.
Molecules and Cooper pairs in Ultracold Gases Krynica 2005 Krzysztof Góral Marzena Szymanska Thorsten Köhler Joshua Milstein Keith Burnett.
Rotating FFLO Superfluid in cold atom gases Niigata University, Youichi Yanase Tomohiro Yoshida 2012 Feb 13, GCOE シンポジウム「階層の連結」, Kyoto University.
Quantum magnetism of ultracold atoms $$ NSF, AFOSR MURI, DARPA Harvard-MIT Theory collaborators: Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Takuya.
Interazioni e transizione superfluido-Mott. Bose-Hubbard model for interacting bosons in a lattice: Interacting bosons in a lattice SUPERFLUID Long-range.
Precision collective excitation measurements in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems A. Altmeyer 1, S. Riedl 12,
Soliton-core filling in superfluid Fermi gases with spin imbalance Collaboration with: G. Lombardi, S.N. Klimin & J. Tempere Wout Van Alphen May 18, 2016.
Functional Integration in many-body systems: application to ultracold gases Klaus Ziegler, Institut für Physik, Universität Augsburg in collaboration with.
Have left: Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborator: Anne Crubellier (Laboratoire Aimé Cotton) B. Pasquiou.
1 Vortex configuration of bosons in an optical lattice Boulder Summer School, July, 2004 Congjun Wu Kavli Institute for Theoretical Physics, UCSB Ref:
Phase separation and pair condensation in spin-imbalanced 2D Fermi gases Waseem Bakr, Princeton University International Conference on Quantum Physics.
Agenda Brief overview of dilute ultra-cold gases
Ultracold gases Jami Kinnunen & Jani-Petri Martikainen Masterclass 2016.
Matter-wave droplets in a dipolar Bose-Einstein condensate
Novel quantum states in spin-orbit coupled quantum gases
Ehud Altman Anatoli Polkovnikov Bertrand Halperin Mikhail Lukin
One-Dimensional Bose Gases with N-Body Attractive Interactions
Correlation Effect in the Normal State of a Dipolar Fermi Gas
Presentation transcript:

11/14/2007NSU, Singapore Dipolar Quantum Gases: Bosons and Fermions Han Pu 浦晗 Rice University, Houston, TX, USA Dipolar interaction in quantum gases Dipolar BEC Rotons and charge density wave Dipolar Fermions

Current cold atom research at Rice Univ. Hulet group (exp.) BEC (Anderson localization, soliton) Fermi superfluid (Feshbach resonance, BEC-BCS crossover) Strongly correlated fermions in optical lattice Killian group (exp.) Ultracold plasma Neutral Sr (photoassociation, condensation) Pu group (th.) BEC (vortex and vortex lattice, spinor condensate, dipolar condensate, coupled atom-molecule condensate) Fermi gas (dipolar, BEC-BCS crossover, Fermi superfluid) Bose-Fermi mixture Quantum simulation (optical lattice systems) Quantum optics (interaction between light and cold atoms)

Two-body collisions at ultracold temperature (current paradigm) Dominated by the s-wave (isotropic) Short ranged (~1/R 6 ) Effective interaction --- pseudopotential Gross-Pitaevskii Equation

Dipolar system Atoms: magnetic dipole moment Polar molecules: large electric dipole moment Besides the short-range interaction, atoms or molecules may interact with each other via long-range anisotropic dipole-dipole interaction.

Dipolar interaction between two atoms Long ranged (~1/R 3 ) Anisotropic (Polarized dipole)

Computational method Two problems: 1) How to calculate efficiently the convolution integrals. 2) Dipolar interaction looks singular. One solution: Convolution theorem → Fourier Transform (FFT). Fourier transform of dipolar interaction is non-singular.

Chromium BEC realized Griesmaier et al., Phys. Rev. Lett. 95, (2005) Stuhler et al., Phys. Rev. Lett. 95, (2005) Dipolar effects on expansion dynamics

Vortex States in Dipolar condensate (and its connection with roton) Yi and Pu, PRA 73, (R) (2006)

Vortex studies in BEC Formation and decay Multiply charged vortices Tkachenko and Kelvin mode excitation Vortex state in combined harmonic and quartic trap Vortex in spinor condensate Vortex rings Scissors mode excitation Vortex lattice Bragg spectroscopy Quantum melting Vortex pinning (Ketterle, MIT)

Quasi-2D dipolar condensate Trapping potential Wave function decomposition Trap aspect ratio: Axial wave function:

Effective 2D dipolar interaction potential Dipoles polarized along z-axis Isotropic (azimuthal symmetry in the xy-plane x y

Vortex state for z-polarized dipoles Single vortex state: What causes the density ripples? Higher rotating freq. Vortex lattice: hexagonal

Vortex line as roton emitter? calculated vortex core structure for He II, at different pressure Dalfovo, PRB 46, 5482 (1992) Excitation spectrum of He II

Vortex structure vs. roton excitation in dipolar BEC Single vortex state: Excitation spectrum (homogeneous system) Santos et al., PRL (2003)

Rotons can be ‘emitted’ by other impurities Vortex line, alien atoms, container wall Difficult to observe in superfluid helium as the roton wavelength is only a few angstrons. A qualitative plot of superfluid density of HeII confined between two rigid walls. --- Rasetti and Regge, 1978

Quasi-2D BEC in a box Like the vortex line, here the wall may become the roton emitter. Roton instability induces charge density wave: Square CDW → triangular CDW → collapse

Beyond quasi-2D Charge density wave damped inside the bulk.

Dipolar BEC in 3D harmonic trap Ronen, Bortolotti, Bohn PRL 98, (2007)

Conclusion for dipolar BEC Dipolar interaction: long-range, anisotropic, New ground state structure Roton excitation and CDW (crystallization, supersolid?)

Dipolar fermions (spin polarized) Miyakawa, Sogo and Pu, arXiv:

Fermions vs. Bosons (T=0) Bosons Condensed (all atoms occupy the same state, macroscopic wave function) Symmetric many-body wave function: Hartree direct energy Real space and momentum space distribution: Fourier transform Fermions Pauli principle Anti-symmetric many-body wave function: Hartree direct and Fock exchange energy Real space and momentum space distribution: no direct relation Trapped non-interacting fermions: isotropic momentum distribution.

Model N spin polarized (along z-axis) fermions Interacting with each other via the dipolar interaction

Total energy Goal: minimize the total energy Strategy: treat the Wigner function variationally

Homogeneous case: Wigner function

Homogeneous case: energies Kinetic energy favors an isotropic Fermi surface (α =1); Fock energy tends to stretch the Fermi surface along z-axis (α =0); Competition b/w the two results in a prolate Fermi surface (0< α <1).

Inhomogeneous case: Wigner function

Inhomogeneous case: energies Interaction energy is not bounded from below (dipolar interaction is partially attractive). The system is not absolutely stable against collapse (λ → ∞). A local minimum may exist: the system may sustain a metastable state.

Results (I): density profiles Real space: Momentum space:

Results (II): density profiles in real space Solid lines: interacting Dashed lines: non-interacting

Results (III): deformation Momentum spaceReal space

Results (IV): stability Sufficiently large dipolar strength will collapse the system.

Conclusion and outlook Dipolar interaction deforms the quantum Fermi gas in both real and momentum space. Dipolar effects can be observed in TOF image. Ideal gas: isotropic expansion Dipolar gas: anisotropic expansion Importance of the Fock exchange term. Near future: Collective excitation Dipolar induced superfluid pairing

Collaborators: Hong Lu (Rice) Su Yi (ITP, CAS) Takahiko Miyakawa (Tokyo Univ. of Sci.) Takaaki Sogo (Kyoto Univ.)