ARPES studies of unconventional

Slides:



Advertisements
Similar presentations
Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy Tao Wu et. al. Nature 477, 191 (2011). Kitaoka Lab. Takuya.
Advertisements

Inhomogeneous Superconductivity in the Heavy Fermion CeRhIn 5 Tuson Park Department of Physics, Sungkyunkwan University, Suwon , South Korea IOP.
A new class of high temperature superconductors: “Iron pnictides” Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration.
Iron pnictides: correlated multiorbital systems Belén Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) ATOMS 2014, Bariloche Maria José.
Space group symmetry, spin-orbit coupling and the low energy effective Hamiltonian for iron based superconductors (arXiv: ) Vladimir Cvetkovic.
Iron pnictides are layered Iron pnictides are layered materials characterized by Pnictogen (Pn)-Fe layers, Pn=As,P. Fe-Pn bonds form an angle  with the.
High T c Superconductors & QED 3 theory of the cuprates Tami Pereg-Barnea
Quantum “disordering” magnetic order in insulators, metals, and superconductors HARVARD Talk online: sachdev.physics.harvard.edu Perimeter Institute, Waterloo,
Kitaoka lab. Takayoshi SHIOTA M1 colloquium N. Fujiwara et al., Phys. Rev. Lett. 111, (2013) K. Suzuki et al., Phys. Rev. Lett. 113, (2014)
BiS 2 compounds: Properties, effective low- energy models and RPA results George Martins (Oakland University) Adriana Moreo (Oak Ridge and Univ. Tennessee)
Pairing glue antiferromagnetism, polaron pseudogap High-Tc.
Recap: U(1) slave-boson formulation of t-J model and mean field theory Mean field phase diagram LabelStateχΔb IFermi liquid≠ 0= 0≠ 0 IISpin gap≠ 0 = 0.
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
The new iron-based superconductor Hao Hu The University of Tennessee Department of Physics and Astronomy, Knoxville Course: Advanced Solid State Physics.
Oda Migaku STM/STS studies on the inhomogeneous PG, electronic charge order and effective SC gap of high-T c cuprate Bi 2 Sr 2 CaCu 2 O 8+  NDSN2009 Nagoya.
KITPC 6/1/091 “Possible probes for detecting s ± -wave pairing symmetry in Iron-Pnictides: Novel Josephson junctions and impurity effects ” Wei-Feng Tsai.
Subir Sachdev arXiv: Subir Sachdev arXiv: Loss of Neel order in insulators and superconductors Ribhu Kaul Max Metlitski Cenke Xu.
Violation of Anderson‘s Theorem for the s±-wave Superconducting State in the Five-Orbital Model for FeAs S. Onari (Nagoya Univ.) H. Kontani (Nagoya Univ.)
Sonia Haddad LPMC, Département de Physique, Faculté des Sciences de Tunis (Tunisia) Collaborator Samia Charfi-Kaddour (LPMC, Tunisia) Besma Bellafi (LPMC,
Charge Inhomogeneity and Electronic Phase Separation in Layered Cuprate F. C. Chou Center for Condensed Matter Sciences, National Taiwan University National.
The Three Hallmarks of Superconductivity
A new scenario for the metal- Mott insulator transition in 2D Why 2D is so special ? S. Sorella Coll. F. Becca, M. Capello, S. Yunoki Sherbrook 8 July.
Whither Strongly Correlated Electron Physics ? T.M.Rice ETHZ & BNL What`s so unique about the cuprates among the many materials with strongly correlated.
Putting competing orders in their place near the Mott transition cond-mat/ and cond-mat/ Leon Balents (UCSB) Lorenz Bartosch (Yale) Anton.
A1- What is the pairing mechanism leading to / responsible for high T c superconductivity ? A2- What is the pairing mechanism in the cuprates ? What would.
AFM correlation and the pairing mechanism in the iron pnictides and the (overdoped) cuprates Fa Wang (Berkeley) Hui Zhai (Berkeley) Ying Ran (Berkeley)
Nematic Electron States in Orbital Band Systems Congjun Wu, UCSD Collaborator: Wei-cheng Lee, UCSD Feb, 2009, KITP, poster Reference: W. C. Lee and C.
Correlated Superconductivity in Cuprates and Pnictides Zlatko Tesanovic, web:
Microscopic nematicity in iron superconductors Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration with: Laura Fanfarillo.
B. Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)
Interplay between magnetism and superconductivity in Fe-pnictides Institute for Physics Problems, Moscow, June 30, 2010 Andrey Chubukov University of Wisconsin.
Superconducting Gap Symmetry in Iron-based Superconductors: A Thermal Conductivity Perspective Robert W. Hill.
Zlatko Tesanovic, Johns Hopkins University o Strongly correlated.
Pengcheng Dai The University of Tennessee (UT) Institute of Physics, Chinese Academy of Sciences (IOP) Evolution of spin excitations.
Fe As Nodal superconducting gap structure in superconductor BaFe 2 (As 0.7 P 0.3 ) 2 M-colloquium5 th October, 2011 Dulguun Tsendsuren Kitaoka Lab. Division.
Paired electron pockets in the hole-doped cuprates Talk online: sachdev.physics.harvard.edu Talk online: sachdev.physics.harvard.edu.
Zlatko Tesanovic, Johns Hopkins University o Iron-pnictide HTS are.
寻找开启高温超导机理的钥匙 胡江平 中科院物理研究所 & 美国普渡大学 7/22/2011.
会社名など E. Bauer et al, Phys. Rev. Lett (2004) M. Yogi et al. Phys. Rev. Lett. 93, (2004) Kitaoka Laboratory Takuya Fujii Unconventional.
Symmetry breaking in the Pseudogap state and Fluctuations about it Schematic Universal phase diagram of high-T c superconductors MarginalFermi-liquid Fermi.
Unconventional superconductivity Author: Jure Kokalj Mentor: prof. dr. Peter Prelovšek.
Zheng-Yu Weng IAS, Tsinghua University
Generalized Dynamical Mean - Field Theory for Strongly Correlated Systems E.Z.Kuchinskii 1, I.A. Nekrasov 1, M.V.Sadovskii 1,2 1 Institute for Electrophysics.
Competing Orders, Quantum Criticality, Pseudogap & Magnetic Field-Induced Quantum Fluctuations in Cuprate Superconductors Nai-Chang Yeh, California Institute.
Relativistic BCS-BEC Crossover in a boson-fermion Model
Zheng-Yu Weng Institute for Advanced Study Tsinghua University, Beijing KITPC, AdS/CM duality Nov. 4, 2010 High-T c superconductivity in doped antiferromagnets.
Fe As A = Ca, Sr, Ba Superconductivity in system AFe 2 (As 1-x P x ) 2 Dulguun Tsendsuren Kitaoka Lab. Division of Frontier Materials Sc. Department of.
Raman Scattering As a Probe of Unconventional Electron Dynamics in the Cuprates Raman Scattering As a Probe of Unconventional Electron Dynamics in the.
Spatially resolved quasiparticle tunneling spectroscopic studies of cuprate and iron-based high-temperature superconductors Nai-Chang Yeh, California Institute.
Emergent Nematic State in Iron-based Superconductors
Mott Transition and Superconductivity in Two-dimensional
Three Discoveries in Underdoped Cuprates “Thermal metal” in non-SC YBCO Sutherland et al., cond-mat/ Giant Nernst effect Z. A. Xu et al., Nature.
Distinct Fermi Surface Topology and Nodeless Superconducting Gap in a (Tl 0.58 Rb 0.42 )Fe 1.72 Se 2 Superconductor D. Mou et al PRL 106, (2011)
A new type Iron-based superconductor ~K 0.8 Fe 2-y Se 2 ~ Kitaoka lab Keisuke Yamamoto D.A.Torchetti et al, PHYSICAL REVIEW B 83, (2011) W.Bao et.
Dirac fermions with zero effective mass in condensed matter: new perspectives Lara Benfatto* Centro Studi e Ricerche “Enrico Fermi” and University of Rome.
Superconductivity and magnetism in iron-based superconductor
SUPERCONDUCTIVITY IN SYSTEMS WITH STRONG CORRELATIONS
Interplay between magnetism and superconductivity in Fe-pnictides Institute for Physics Problems, Moscow, July 6, 2010 Andrey Chubukov University of Wisconsin.
Zlatko Tesanovic, Johns Hopkins University o Strongly correlated.
6/7/2016 Iron Superconductivity !! o Superconducting Gap in FeAs from PCAR o “Minimal” Model of FeAs planes – Different from CuO 2 !! o Multiband Magnetism.
强关联电子体系 ― 现象、理论与计算略讲 周森 中国科学院理论物理研究所 2012 年 8 月 9 日 2012 年理论物理研究生暑期学校 凝聚态物理 ― 现象、理论与计算.
Pengcheng Dai The University of Tennessee (UT) Institute of Physics, Chinese Academy of Sciences (IOP) Evolution of spin excitations.
Variational Monte-Carlo Study of the iron-based superconductors Fan Yang Beijing Institute of Technology.
Interplay between magnetism and superconductivity in Fe-pnictides INFN, Frascati, July 14, 2011 Andrey Chubukov University of Wisconsin.
A New Piece in The High T c Superconductivity Puzzle: Fe based Superconductors. Adriana Moreo Dept. of Physics and ORNL University of Tennessee, Knoxville,
Search for New Topological Insulator Materials April 14, 2011 at NTNU Hsin Lin Northeastern University.
R. Nourafkan, G. Kotliar, A.-M.S. Tremblay
ARPES studies of cuprates
R. L. Greene Electron-doped Cuprates University of Maryland
UC Davis conference on electronic structure, June. 2009
Presentation transcript:

ARPES studies of unconventional superconductors Hong Ding Institute of Physics, Chinese Academy of Sciences Swiss architecture firm Herzog & de Meuron Heavy Fermion Physics Workshop, January 9, 2012

Phase diagrams pnictide SC heavy fermion SC organic SC cuprate SC

Fermi surface mapping of cuprates Bi2Sr2CaCu2O8 Tight binding fitting Large FS, area = 1-x: Luttinger’s theorem

d-wave superconducting gap in cuprates Half-Integer Flux Quantum Effect

Pseudogap in underdoped cuprates

Phase diagram of Ba122 system Electron doping Hole doping Electron-hole asymmetry? M. Neupane et al., PRB 83, 094522 (2011)

ARPES observation of five bands and five FSs

Fermi surface evolution in “122” Heavily OD Slightly OD OPT UD QAF Tc = 3 K Tc = 22 K Tc = 37 K Tc = 26 K Hole doping Parent UD OPT Heavily OD QAF TN = 135 K Tc = 0 K Tc = 11 K Tc = 25 K Tc = 0 K Electron doping

ARPES observation of superconducting gap 2/Tc ~ 7 H. Ding et al., EPL 83, 47001 (2008)

Nodeless SC gap in Ba0.6K0.4Fe2As2 (Tc = 37K) H. Ding et al., EPL 83, 47001 (2008) K. Nakayama et al., EPL 85, 67002 (2009)

- + J1 – J2 model predicts almost isotropic s± gap + Order parameters in momentum Space Real space configuration of pairing symmetry local interactions J1- J2 - + + pnictides: large J2 and FS topology favor D = D0 coskxcosky, s±-wave cuprates: large J1 and FS topology favor D = D0 (coskx–cosky)/2, d-wave K. Seo, A. B. Bernevig, J. Hu PRL 101, 206404 (2008)

Most weak-coupling theories predict anisotropic s± gap D.H. Lee EPL 85, 37005 (2009) I. Mazin PRB 79, 060502 (2009) S. Graser NJP 11, 025016 (2009) when

overdoped Ba0.3K0.7Fe2As2 (Tc ~ 20K) K. Nakayama et al., PRB 83, 020501(R) (2011)

underdoped Ba0.75K0.25Fe2As2 (Tc = 26K) Y.-M. Xu et al., Nature Communications 2, 392 (2011)

Doping dependence of the SC gaps in Ba1-xKxFe2As2 K. Nakayama et al., PRB 83, 020501(R) (2011)

Electron doped BaFe1.85Co0.15As2 (Tc = 25.5K) K. Terashima et al, PNAS 106, 7330 (2009)

kz dependence of SC gaps single gap function Jab = 30 Jc = 5 D2/D1 ≈ Jc/Jab ≈ 0.17 Y.-M. Xu et al., Nature Physics 7, 198 (2011)

“111” - NaFe0.95Co0.05As (Tc = 18K) Z.-H. Liu et al., arXiv:1008.3265, PRB

“11” - FeTe0.55Se0.45 (Tc = 13K)

J1 = -34 J2 = 22 J3 = 6.8 D2/D3 ≈ J2/J3 ≈ 0.3 H. Miao et al., arXiv:1107.0985

(Tl,K)Fe2-xSe2 (Tc ~ 30K) T. Qian et al., PRL (2011)

Isotropic SC gap on electron FS J1 < 0, FM, d-wave is not favored X.-P. Wang et al., EPL 93, 57001 (2011)

Selection Rules of Pairing Symmetry Self-consistent meanfield equation for t-J model Overlap strength between pairing form factor and Fermi surface OS =

Three classes of high-Tc superconductors J1 J2 J2+J3

Three classes of high-Tc superconductors J1 J2 J2+J3

Summary The SC gap of all iron-based superconductors measured by ARPES can by described approximately by J1-J2-J3 model A possible unified paradigm of high-Tc superconductivity: local AFM magnetic exchange + collaborative FS topology J.-P. Hu and H. Ding, arXiv:1107.1334