Constraints on a Universal IMF1 from the Entire Stellar Population2,3

Slides:



Advertisements
Similar presentations
Color-magnitude relations of disk galaxies: observations vs. model predictions Ruixiang Chang ( Shanghai Astronomical Observatory ) Collaborators: Jinliang.
Advertisements

Elodie GIOVANNOLI Laboratoire d’Astrophysique de Marseille, FRANCE Advisor : Veronique BUAT Collaborators : Denis Burgarella, Stefan Noll Spectral energy.
Optimal Photometry of Faint Galaxies Kenneth M. Lanzetta Stony Brook University.
Fitting the full SED (from UV to far-IR) of galaxies to put constraints on dust attenuation and star formation determinations, from z=0 to z=2 The CIGALE.
Far-infrared properties of UV selected galaxies from z=4 to z=1.5: unveiling obscured star formation Véronique Buat & Sebastien Heinis With the contribution.
The Luminosity-Metallicity Relation of Distant Luminous Infrared Galaxies Yanchun Liang (1,2), Francois Hammer (2), Hector Flores (2), David Elbaz (3),
Aging nearby spiral galaxies using H-alpha to UV flux ratios: Effect of model parameters Francesca von Braun-Bates.
RESULTS AND ANALYSIS Mass determination Kauffmann et al. determined masses using SDSS spectra (Hdelta & D4000) Comparison with our determination: Relative.
Star-Formation in Close Pairs Selected from the Sloan Digital Sky Survey Overview The effect of galaxy interactions on star formation has been investigated.
September 6— Starburst 2004 at the Institute of Astronomy, Cambridge Constraints on Lyman continuum flux escaping from galaxies at z~3 using VLT.
Bayesian Analysis of X-ray Luminosity Functions A. Ptak (JHU) Abstract Often only a relatively small number of sources of a given class are detected in.
Dark Matter and Galaxy Formation Section 4: Semi-Analytic Models of Galaxy Formation Joel R. Primack 2009, eprint arXiv: Presented by: Michael.
Eight billion years of galaxy evolution Eric Bell Borch, Zheng, Wolf, Papovich, Le Floc’h, & COMBO-17, MIPS, and GEMS teams Venice
Star Formation in the Universe Robert Kennicutt Institute of Astronomy University of Cambridge.
SFR and COSMOS Bahram Mobasher + the COSMOS Team.
Bell, E. F et al “Nearly 5000 distant Early-type galaxies in COMBO-17: A Red Sequence and its evolution since z~1” Presented by: Robert Lindner (Bob)‏
The Near Infrared Background Excess and Star Formation in the HUDF Rodger Thompson Steward Observatory University of Arizona.
Bruno Henriques Claudia Maraston & the Marie Curie Excellence Team Guinevere Kauffmann, Pierluigi Monaco Evolution of the Near-Infrared Emission from Galaxies:
“ Testing the predictive power of semi-analytic models using the Sloan Digital Sky Survey” Juan Esteban González Birmingham, 24/06/08 Collaborators: Cedric.
C. Halliday, A. Cimatti, J. Kurk, M. Bolzonella, E. Daddi, M. Mignoli, P. Cassata, M. Dickinson, A. Franceschini, B. Lanzoni, C. Mancini, L. Pozzetti,
Lisa Kewley (CfA) Margaret Geller (CfA) Rolf Jansen (ASU) Mike Dopita (RSAA)
New Insight Into the Dust Content of Galaxies Based on the Analysis of the Optical Attenuation Curve.
Massive galaxies at z > 1.5 By Hans Buist Supervisor Scott Trager Date22nd of june 2007.
Luminosity and Mass functions in spectroscopically-selected groups at z~0.5 George Hau, Durham University Dave Wilman (MPE) Mike Balogh (Waterloo) Richard.
Evolutionary Population Synthesis models Divakara Mayya INAOEhttp:// Advanced Lectures on Galaxies (2008 INAOE): Chapter 4.
Obscured AGN in the (z)COSMOS survey AGN9, Ferrara, May Angela Bongiorno Max-Planck-Institut für extraterrestrische Physik, Garching, GERMANY AND.
THE FAR-INFRARED FIR = IRAS region ( micron) TIR = micron (1 micron = 1A/10^4) Silva et al Lambda (micron) Log λ L.
3.SED Fitting Method Figure3. A plot between IRAC ch2 magnitudes (4.5  m) against derived stellar masses indicating the relation of the stellar mass and.
RADIO OBSERVATIONS IN VVDS FIELD : PAST - PRESENT - FUTURE P.Ciliegi(OABo), Marco Bondi (IRA) G. Zamorani(OABo), S. Bardelli (OABo) + VVDS-VLA collaboration.
Galaxy and Mass Assembly (GAMA) Survey Sarah Brough Sarah Brough - Australian Astronomical Observatory.
Conference “Summary” Alice Shapley (Princeton). Overview Multitude of new observational, multi-wavelength results on massive galaxies from z~0 to z>5:
10/14/08 Claus Leitherer: UV Spectra of Galaxies 1 Massive Stars in the UV Spectra of Galaxies Claus Leitherer (STScI)
The Extremely Red Objects in the CLASH Fields The Extremely Red Galaxies in CLASH Fields Xinwen Shu (CEA, Saclay and USTC) CLASH 2013 Team meeting – September.
Ranga-Ram Chary, Oct ’08 The First Billion Years of Galaxy Evolution Ranga-Ram Chary Spitzer Science Center/Planck Data Center California Institute of.
The Environmental Effect on the UV Color-Magnitude Relation of Early-type Galaxies Hwihyun Kim Journal Club 10/24/2008 Schawinski et al. 2007, ApJS 173,
Scaling Relations in HI Selected Star-Forming Galaxies Gerhardt R. Meurer The Johns Hopkins University Gerhardt R. Meurer The Johns Hopkins University.
Comprehensive Stellar Population Models and the Disentanglement of Age and Metallicity Effects Guy Worthey 1994, ApJS, 95, 107.
Advanced Stellar Populations Advanced Stellar Populations Raul Jimenez
The Accretion History of SMBHs in Massive Galaxies Kate Brand STScI Collaborators: M. Brown, A. Dey, B. Jannuzi, and the XBootes and Bootes MIPS teams.
Galaxies in the UKIDSS Large Area Survey Jon Loveday Anthony Smith Celine Eminian University of Sussex.
Luminosity Functions from the 6dFGS Heath Jones ANU/AAO.
FRENEL Meeting, Nice, September 2009 FRESNEL Imager: Extragalactic Science in the UV-Optical domains Roser Pelló Laboratoire d’Astrophysique de Toulouse-Tarbes.
The star formation history of the local universe A/Prof. Andrew Hopkins (AAO) Prof. Joss Bland-Hawthorn (USyd.) & the GAMA Collaboration Madusha L.P. Gunawardhana.
Lyman Break Galaxies in Large Quasar Groups at z~1 G Williger (Louisville/JHU), R Clowes (Central Lancashire), L Campusano (U de Chile), L Haberzettl &
A Steep Faint-End Slope of the UV LF at z~2-3: Implications for the Missing Stellar Problem C. Steidel ( Caltech ) Naveen Reddy (Hubble Fellow, NOAO) Galaxies.
Hi. My name is Alexia Lewis
Stellar Population Mass Estimates Roelof de Jong (STScI AIP) Eric Bell (MPIA Univ. of Michigan)
Multiwavelength Properties of the SDSS Galaxies in Various Classes Feb 19, 2008 Joon Hyeop Lee 1, Myung Gyoon Lee 1, Changbom Park 2, Yun-Young Choi 2.
The Stellar Assembly History of Massive Galaxies Decoding the fossil record Raul Jimenez Licia Verde UPenn Alan Heavens Ben.
How are galaxies influenced by their environment? rachel somerville STScI Predictions & insights from hierarchical models with thanks to Eric Bell the.
Aug 8th, 2007MAGPOP Summer School Models for source counts and background spectrum, from submm to ultraviolet ingredients for counts model at submm to.
KASI Galaxy Evolution Journal Club A Massive Protocluster of Galaxies at a Redshift of z ~ P. L. Capak et al. 2011, Nature, in press (arXive: )
Star Formation History of the Hubble Ultra Deep Field Rodger Thompson Steward Observatory University of Arizona.
Modelling the Red Halos of Blue Compact Galaxies Zackrisson, E 1., Bergvall, N 1., Marquart, T 1., Mattsson, L 1. & Östlin, G. 2 1 Uppsala Astronomical.
9 Gyr of massive galaxy evolution Bell (MPIA), Wolf (Oxford), Papovich (Arizona), McIntosh (UMass), and the COMBO-17, GEMS and MIPS teams Baltimore 27.
Evolution of Rest-frame Luminosity Density to z=2 in the GOODS-S Field Tomas Dahlen, Bahram Mobasher, Rachel Somerville, Lexi Moustakas Mark Dickinson,
Selection and Photometric Properties of K+A Galaxies Alejandro D. Quintero, David W. Hogg, Michael R. Blanton (NYU), et al.
Lightcones for Munich Galaxies Bruno Henriques. Outline 1. Model to data - stellar populations and photometry 2. Model to data - from snapshots to lightcones.
Exploring the formation epoch of massive galaxies O.Almaini, S. Foucaud, C. Simpson, I. Smail, K. Sekiguchi, M. Watson, M. Page, P. Hirst Michele Cirasuolo.
The Mid-Infrared Luminosities of Normal Galaxies over Cosmic Time (discussion of arXiv: ) Urtzi Jauregi Astro debata,
Galaxy Evolution and WFMOS
Are WE CORRECTLY Measuring the Star formation in galaxies?
THE FIRST GALAXY FORMATION MODEL WITH THE TP-AGB:
The History of the Baryon Budget Yann Rasera Supervisor: Romain Teyssier and Jean-Pierre Chièze Horizon Project Cosmological simulations Analytical model.
Behavior of Reddenings in the Color-Magnitude & Color-Color Diagrams of SDSS Filters 김성수, 이명균.
in a Large-Scale Structure at z=3.1
Possibility of UV observation in Antarctica
The Presence of Massive Galaxies at z>5
A Population of Old and Massive Galaxies at z > 5
The dust attenuation in the galaxy merger Mrk848
Presentation transcript:

Constraints on a Universal IMF1 from the Entire Stellar Population2,3 Ivan Baldry Johns Hopkins University working with Karl Glazebrook 1Assuming a universal IMF and constraining the upper-mass IMF slope (M >~ 1 solar mass). Footnote 1: Really constraining 1 to 100 solar mass exponent of IMF. Footnote 2: Surveys at many wavelengths. Low redshift and high redshift. Consensus of light in the Universe is good except for the lowest surface brightness regions e.g. intra-cluster stars. 2UV to IR galaxy luminosity densities (e.g. SDSS, FOCA, 2MASS, 2dFGRS and IRAS data) - “the Cosmic Spectrum”. 3Based on Baldry & Glazebrook, 2003, in ApJ, Vol. 593

Integrated Stellar Populations Extragalactic astronomers fit population synthesis models to colors or spectra of galaxies to gain insights into star formation history, dust content, etc. Usually a stellar initial mass function (IMF) is assumed because of the age-IMF degeneracy. This age-IMF degeneracy can be broken for the Universe as a whole (assuming the Copernican principle): Age = 13.70.2 Gyr (Spergel et al. 2003); Meas. of cosmic star formation history (Madau et al. 1996, `98); Meas. of the local “cosmic spectrum” (Baldry et al. 2002).

Overview of Fitting Stellar initial mass function (IMF) Cosmic star formation history (SFR tracers 0 < z < ~5) Chemical evolution Dust attenuation Population synthesis models DATA – luminosity densities (0 < z < 0.2): FOCA (balloon), 0.2 microns (Sullivan et al. 2000); SDSS ugriz, 0.3-1 microns (Blanton et al. 2003); 2MASS, 2 microns, with z (Cole et al., Kochanek et al. 2001); H-alpha, attenuation-corrected (Gallego et al. 1995 and others); IRAS FIR (Saunders et al. 1990) converted to total dust emission.

Stellar IMF Parameterization Note unusual y-axis scaling: mass fraction m–0.5 for 0.1 < m < 0.5 m–G for 0.5 < m < 120 nlog m  G=1.35 is Salpeter slope

Cosmic Star Formation History REDSHIFT “Madau plot” versus time Various measurements, e.g, Lilly et al. 1996, Madau et al. 1996/98, Cowie et al. 1999, Steidel et al. 1999, Lanzetta et al. 2002, + more. SFR  (1+z)b for z<1 (0.5 < b < 4.0 allowed) and, SFR  (1+z)a for 1<z<5 (SFR = 0 for z>5; meet at z=1).

Cosmic Chemical Evolution The cosmic stellar-mass weighted metallicity is approx. solar (cf. our neighborhood in the Milky Way). Compare ‘closed box’ with ‘constant metallicity’ approximations. Allow average Z from about 0.5 Zsolar to 2 Zsolar.

Cosmic Dust Attenuation Law Inclination-averaged attenuations. Compilation from Calzetti (2001). Estimated dust attenuation allowing for different contributions from late- and early-type galaxies as a function of wavelength. About 90% of the luminosity density is derived from late type galaxies at 0.2 microns and about 50% at visible to near-IR wavelengths. Power-law with exponent ~ –0.8

Population Synthesis PEGASE.2 (Fioc & Rocca-Volmerange 1997, 1999): Covers UV to IR; Includes stellar and nebular (continuum and line emission); Can specify arbitrary power law IMFs and SFH. Evolutionary tracks from Padova group. Theoretical spectra from Clegg & Middlemass (1987) and Lejeune et al. (1997) (derived from Kurucz models, NextGen and Fluks catalogues). From the output spectra, determine: Colors through FOCA, SDSS and 2MASS filters; Total dust emission for various dust power laws; H-alpha luminosity (reprocessed Lyman continuum emission).

Data Summary Local Luminosity Density Measurements from Various Surveys (0<z<0.2) Band l / mm FWHM quantity log(q / h W Mpc-3) References, notes FOCA 2000 0.20 0.02 nfn 34.35  0.12 Sullivan et al. 2000 SDSS 0.1u 0.32 0.05 34.25  0.08 Blanton et al. 2003 SDSS 0.1g 0.42 0.11 34.56  0.04 SDSS 0.1r 0.56 0.10 34.73  0.04 SDSS 0.1i 0.68 34.78  0.04 SDSS 0.1z 0.81 0.09 34.83  0.04 2MASS Ks 2.16 0.28 34.53  0.12 Average: Cole et al., Kochanek et al. Ha 0.6563 (line) (bolo.) 32.63  0.20 Attenuation-corrected, average TIR 3–1100 (broad) 34.70  0.15 Scaled from FIR of Saunders et al.

Effect of Various Parameters Normalized at 0.56 microns. DATA FOCA, Sullivan et al. 2000 SDSS, Blanton et al. 2003 2MASS, Cole et al. 2001, Kochanek et al. Hawaii, Huang et al. 2003 AB Magnitudes (a log fn) Wavelength (0.15-2.5 microns)

Results Assuming: constant SFR from z = 1 to 5, average metallicity = solar. Fitting to 0.20, 0.32, 0.42, 0.56, 0.68, 0.81, 2.2 + Ha + dust emission. Red contours for constant Z Blue contours for closed box approx. redshift < 1 star formation power law (Salpeter = 1.35) Dc2=(1, 2.3, 6.2, 11.2)

Results continued Assuming: high z>1 SFR a (1+z)2, average metallicity = solar. Fitting to 0.2-0.8, 2.2 + Ha + total dust emission. Red contours for constant Z Blue contours for closed box approx. redshift < 1 star formation power law (Salpeter = 1.35) Dc2=(1, 2.3, 6.2, 11.8)

Results continued G=1.1±0.2 marginalized over dust, SFH, 0.5<Z/Zsolar<2. Scalo IMF is inconsistent with data and models (cf. Madau, Pozzetti & Dickinson 1998 and Kennicutt, Tamblyn & Congdon 1994 [incl. Ha EWs]). Stellar mass density of the Universe is in the range 0.15% to 0.28% (0.12% to 0.35% with low-mass IMF uncertainty, or 3% to 8% of baryon density). Stellar bolometric emission is (1.7-2.4) x 1035 W Mpc-3 and dust emission is (0.4-1.0) x 1035, which implies a modest effective average attenuation in the ultraviolet of A2000 < ~60% (< ~1 mag). CAVEAT – results rely on accuracy of population synthesis…

Local Luminosity Densities bolometric luminosity per log l bin Data and best-fit model spectrum: the stellar and the HII region gas emission (Fioc & Rocca-Volmerange) and; the dust emission (Dale & Helou). AGN contribution not shown.

Future and Current Surveys Local imaging surveys (z~0.1): (SDSS has set the bench mark, >105 galaxies with redshifts and ugriz photometry, >103 deg2) – optical; GALEX all-sky survey – ultraviolet; VISTA – near-infrared (also 2MASS with 6dFGS redshifts); ASTRO-F – mid- to far-infrared. Deeper imaging surveys: GALEX deep surveys – ultraviolet; HST – ACS, NICMOS – optical, near-IR; SIRTF – mid- to far-infrared.

… Extra slides follow.

Cosmic Star Formation History Meas. of comoving star-formation rate density (MO/yr/Mpc3) as a function of redshift (or time). CSFH analysis removes uncertainties associated with dynamical history, i.e. consider the Universe to be a single average galaxy. Determine SFR per comoving volume: (modulo dust, SB, etc… corrections) Luv, LFIR, L700Mhz LHa, LHb, L[OII] Number of massive stars formed / unit time

Madau, Pozetti & Dickinson 1998 Fig 3: Salpeter IMF; SMC-type dust in a foreground screen; E(B–V)=0.1. 2.2 mm 1.0 mm .44 mm .28 mm .15 mm

Madau, Pozetti & Dickinson 1998 2.2 mm 1.0 mm .44 mm .28 mm .15 mm Salpeter IMF, E(B–V) = 0.011(1+z)2.2 Scalo IMF, no dust

Table of IMF Comparisons