MSI Combinational logic circuits

Slides:



Advertisements
Similar presentations
ECE 2110: Introduction to Digital Systems Chapter 6 Combinational Logic Design Practices Encoders.
Advertisements

Give qualifications of instructors: DAP
Princess Sumaya University
Modular Combinational Logic
Combinational Circuits
Documentation Standards
Functions and Functional Blocks
1 KU College of Engineering Elec 204: Digital Systems Design Lecture 9 Programmable Configurations Read Only Memory (ROM) – –a fixed array of AND gates.
COE 202: Digital Logic Design Combinational Circuits Part 3 Dr. Ahmad Almulhem ahmadsm AT kfupm Phone: Office: Ahmad Almulhem, KFUPM.
CS 151 Digital Systems Design Lecture 17 Encoders and Decoders
1 Designing with MSI Documentation Standards  Block diagrams first step in hierarchical design  Schematic diagrams  Timing diagrams  Circuit descriptions.
Combinational Logic Building Blocks
COMBINATIONAL CIRCUITS USING TTL 74XX ICS
DIGITAL SYSTEMS TCE OTHER COMBINATIONAL LOGIC CIRCUITS DECODERS ENCODERS.
ECE 331 – Digital System Design
ECE 301 – Digital Electronics Multiplexers and Demultiplexers (Lecture #12)
Multiplexer MUX. 2 Multiplexer Multiplexer (Selector)  2 n data inputs,  n control inputs,  1 output  Used to connect 2 n points to a single point.
Chapter2 Digital Components Dr. Bernard Chen Ph.D. University of Central Arkansas Spring 2009.
Part 2: DESIGN CIRCUIT. LOGIC CIRCUIT DESIGN x y z F F = x + y’z x y z F Truth Table Boolean Function.
Logic Gates Combinational Circuits
CS 105 Digital Logic Design
Combinational Logic Chapter 4.
Morgan Kaufmann Publishers
Outline Decoder Encoder Mux. Decoder Accepts a value and decodes it Output corresponds to value of n inputs Consists of: Inputs (n) Outputs (2 n, numbered.
CS 151: Digital Design Chapter 3 3-8: Encoding. CS 151 Encoding Encoding - the opposite of decoding - the conversion of a maximum of 2 n input code to.
Combinational Logic Design
Outline Analysis of Combinational Circuits Signed Number Arithmetic
Sahar Mosleh PageCalifornia State University San Marcos 1 Multiplexer, Decoder and Circuit Designing.
Dr. Ahmed El-Bialy, Dr. Sahar Fawzy Combinational Circuits Dr. Ahmed El-Bialy Dr. Sahar Fawzy.
Digital Computer Concept and Practice Copyright ©2012 by Jaejin Lee Logic Circuits I.
Combinational Circuit – Arithmetic Circuit
1 Digital Logic Design Week 7 Decoders, encoders and multiplexers.
CS2100 Computer Organisation MSI Components (AY2015/6 Semester 1)
WEEK #9 FUNCTIONS OF COMBINATIONAL LOGIC (DECODERS & MUX EXPANSION)
1 Combinational Logic Design Digital Computer Logic Kashif Bashir
Multiplexers and Demultiplexers, and Encoders and Decoders
Lecture 9 Topics: –Combinational circuits Basic concepts Examples of typical combinational circuits –Half-adder –Full-adder –Ripple-Carry adder –Decoder.
CHAPTER 4 Combinational Logic
Multiplexers. Outline  Larger Multiplexers  Standard MSI Multiplexer  Implementing Functions with Multiplexers  Implementing Functions with Smaller.
CS 105 DIGITAL LOGIC DESIGN Chapter 4 Combinational Logic 1.
CS151 Introduction to Digital Design
CO UNIT-I. 2 Multiplexers: A multiplexer selects information from an input line and directs the information to an output line A typical multiplexer has.
1 Fundamentals of Computer Science Combinational Circuits.
Combinational Circuit Design. Digital Circuits Combinational CircuitsSequential Circuits Output is determined by current values of inputs only. Output.
DIGITAL LOGIC DESIGN & COMPUTER ARCHTECTURE
Module 11.  In Module 9, we have been introduced to the concept of combinational logic circuits through the examples of binary adders.  Meanwhile, in.
Digital System Design Multiplexers and Demultiplexers, and Encoders and Decoders.
Complex Combinational Circuits Binary Adders Key to enterprise: Addition table also a truth table S i = C i 'A i B i ' + C i 'A i 'B i + C i A i 'B i '+
CSI-2111 Structure of Computers Ipage Combinational Circuits  Objectives : To recognize the principal types of combinational circuits  Adders.
Digital Design Lecture 8 Combinatorial Logic (Continued)
1 DLD Lecture 16 More Multiplexers, Encoders and Decoders.
Chapter4: Combinational Logic Part 4 Originally By Reham S. Al-Majed Imam Muhammad Bin Saud University.
C OMBINATIONAL L OGIC D ESIGN 1 Eng.Maha AlGubali.
MSI Circuits.
Combinational Circuits: MSI Components
CS221: Digital Logic Design Combinational Circuits 3
Reference: Chapter 3 Moris Mano 4th Edition
Multiplexers and Demultiplexers,
Part 4 Combinational Logic.
Combinational Logic Circuits
ECE 2110: Introduction to Digital Systems Chapter 6 Combinational Logic Design Practices Encoders.
FIGURE 4.1 Block diagram of combinational circuit
EET107/3 DIGITAL ELECTRONICS 1
Programmable Configurations
COE 202: Digital Logic Design Combinational Circuits Part 3
Chapter-4 Combinational Logic
Digital System Design Combinational Logic
Adder, Subtructer, Encoder, Decoder, Multiplexer, Demultiplexer
Arithmetic Circuits.
Presentation transcript:

MSI Combinational logic circuits

Outline Decoders Multiplexers CS 3402--Digital Logic MSI Devices

Decoders/Demultiplexers A decoder is a combinational circuit that converts binary information from n inputs to a maximum of unique 2n output lines. If n bit decoded information has unused or don't care combination, the decoder output will have less than 2n outputs. CS 3402--Digital Logic MSI Devices

Decoders/Demultiplexers A D0 D1 1 CS 3402--Digital Logic MSI Devices

Decoders/Demultiplexers A B D0 D1 D2 D3 1 CS 3402--Digital Logic MSI Devices

Example Design a 2-input, 4-output combinational logic circuit to decode the 2-bit output of the following function table: Input Output X Y A S M D 1 Function Code Add 1 00 Sub 01 Mul 10 Div 11 CS 3402--Digital Logic MSI Devices

Example Full adder S(A,B,C) = m(1,2,4,7) Cin(A,B,C) = m(1,2,4,7) CS 3402--Digital Logic MSI Devices

Decoder with Enable A decoder with an enable can function as a demultiplexer. A demultiplexer is a circuit that receives information on a single line and transmits this information on one of possible 2n lines. The selection of a specific output line is controlled by the bit values of n selection lines. CS 3402--Digital Logic MSI Devices

CS 3402--Digital Logic MSI Devices

Standard MSI Decoders CS 3402--Digital Logic MSI Devices

Example Realize Boolean function f = A'B' + AB with a 2:4 decoder 74139. CS 3402--Digital Logic MSI Devices

3:8 Decoder CS 3402--Digital Logic MSI Devices

4:16 Decoder CS 3402--Digital Logic MSI Devices

Cascading decoders Build a 4:16 decoder using two 74138 decoders. CS 3402--Digital Logic MSI Devices

Encoders An encoder is a digital circuit that performs the inverse operation of a decoder. An encoder has 2n (or fewer) input lines and n output lines. The output lines generate the binary code corresponding to the input value. CS 3402--Digital Logic MSI Devices

Example A calculator has four function keys (add, subtract, multiply, divide). Only one of the function keys can be pressed at a time. When a particular key is pressed, that key is encoded according to the following function tab X = A'S' Y = A'M' Function Code Add 1 00 Sub 01 Mul 10 Div 11 Input Output Line A S M D X Y 1 2 3 4 CS 3402--Digital Logic MSI Devices

Example X = A'S' Y = A'M' Input Output Line A S M D X Y 1 2 3 4 2 3 4 CS 3402--Digital Logic MSI Devices

Multiplexers/selectors Multiplexing means transmitting a large number of information units over a smaller number of channels or lines. A digital multiplexer is a combination circuit that selects binary information from one of many input lines and directs it to a single output line. The selection of a particular input line is controlled by a set of selection lines. Normally, there are 2 input lines and selection lines whose bit combinations determine which input is selected. CS 3402--Digital Logic MSI Devices

21 Multiplexers s0 z I0 1 I1 CS 3402--Digital Logic MSI Devices

21 Multiplexers Z = s0 I0 + s1 I1 I1 I0 s0 Z 1 CS 3402--Digital Logic 1 CS 3402--Digital Logic MSI Devices

41 Multiplexers Z = s1 s0I0 + s1s0 I1 + s1s0 I2 + s1s0 I3 s1 s0 Z I0 I0 1 I1 I2 I3 CS 3402--Digital Logic MSI Devices

81 Multiplexers s2 s1 s0 Z I0 1 I1 I2 I3 I4 I5 I6 I7 Z = s2s1s0I0 + s2s1s0 I1 + s2s1s0 I2 + s2s1s0 I3+ s2s1s0I4 + s2s1s0 I5 + s2s1s0 I6 + s2s1s0 I7 CS 3402--Digital Logic MSI Devices

Alternative Implementation The following diagrams show how to construct a 8  1 multiplexer using either 4  1 multiplexers or 2  1 multiplexers. CS 3402--Digital Logic MSI Devices

CS 3402--Digital Logic MSI Devices

Example F(A,B,C) = m(0,2,6,7) A B C F 1 CS 3402--Digital Logic 1 CS 3402--Digital Logic MSI Devices

Example A B C F 1 C' CS 3402--Digital Logic MSI Devices

Examples Implement a 2  1 multiplexer to F(A,B,C) = m(1,3,5,6) Implement a 4  1 multiplexer to F(A,B,C,D) = m(0,1,3,4,8,9.15) CS 3402--Digital Logic MSI Devices

Multiplexer devices There are multiplexers devices in 7400 series, 74150 16-to-1 multiplexer (24 pins) 74151 8-to-1 multiplexer (16 pins) 74153 4-to-1 multiplexer 74157 2-to-1 multiplexer CS 3402--Digital Logic MSI Devices

Multiplexer devices CS 3402--Digital Logic MSI Devices

Exercises p.319 4.3, 4.4, 4.5, 4.9, 4.15, 4.16, 4.18, 4.19, 4.20, 4.21, 4.23, 4.25 CS 3402--Digital Logic MSI Devices