Aerosol optical properties measured from aircraft, satellites and the ground during ARCTAS - their relationship to aerosol chemistry and smoke type Yohei.

Slides:



Advertisements
Similar presentations
Current Ongoing Relevant Aerosol Measurement Issues Satellite Validation —especially newer satellites (OMI/Aura, CALIOP/CALIPSO, ASP/Glory, …) Aerosol.
Advertisements

GEOS-5 Simulations of Aerosol Index and Aerosol Absorption Optical Depth with Comparison to OMI retrievals. V. Buchard, A. da Silva, P. Colarco, R. Spurr.
Geophysical Fluid Dynamics Laboratory Review June 30 - July 2, 2009 Geophysical Fluid Dynamics Laboratory Review June 30 - July 2, 2009.
Global Climatology of Fine Particulate Matter Concentrations Estimated from Remote-Sensed Aerosol Optical Depth Aaron van Donkelaar 1, Randall Martin 1,2,
Satellite-based Global Estimate of Ground-level Fine Particulate Matter Concentrations Aaron van Donkelaar1, Randall Martin1,2, Lok Lamsal1, Chulkyu Lee1.
Estimating global climatological PM 2.5 from MODIS and MISR AOD Aaron van Donkelaar and Randall Martin April 2009.
Direct aerosol radiative forcing based on combined A-Train observations – challenges in deriving all-sky estimates Jens Redemann, Y. Shinozuka, M.Kacenelenbogen,
Aircraft spiral on July 20, 2011 at 14 UTC Validation of GOES-R ABI Surface PM2.5 Concentrations using AIRNOW and Aircraft Data Shobha Kondragunta (NOAA),
Mainly sampled Asian outflow in the Alaska phase local forest fire smoke in the Canada phase We expect these phases to represent the two extremes among.
A Progress Report on Combining MODIS and CALIPSO Aerosol Data for Direct Radiative Effect Studies Jens Redemann, Qin Zhang, Philip Russell, John Livingston,
Trace gas and AOD retrievals from a newly deployed hyper-spectral airborne sun/sky photometer (4STAR) M. Segal-Rosenheimer, C.J. Flynn, J. Redemann, B.
Aerosol Optical Depths from Airborne Sunphotometry in INTEX-B/MILAGRO as a Validation Tool for the Ozone Monitoring Instrument (OMI) on Aura J. Livingston.
The combined use of MODIS, CALIPSO and OMI level 2 aerosol products for calculating direct aerosol radiative effects Jens Redemann, M. Vaughan, Y. Shinozuka,
4STAR: Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research Development and Results from First Test-flights A collaboration involving: PNNL:
Applications of Satellite Remote Sensing to Estimate Global Ambient Fine Particulate Matter Concentrations Randall Martin, Dalhousie and Harvard-Smithsonian.
Aerosol Optical Depth during the Northern CA Fires of 2008 In situ aerosol light scattering and absorption measurements in Reno Nevada, 2008, indicated.
T2 T1 (biomass burning aerosol) (dust) Findings (1) OMI and AATS AOD retrievals have been analyzed for four spatially and temporally near-coincident events.
Physical, Chemical and Optical Properties of Aerosol: Airborne Observations for MIRAGE, INTEX-B, IMPEX Hawaii Group for Environmental Aerosol Research.
Jetstream 31 (J31) at Mid-Campaign in INTEX-B/MILAGRO: Science Goals, Payload, Example Results, Assessment Phil Russell, Jens Redemann, Brian Cairns, Charles.
GE0-CAPE Workshop University of North Carolina-Chapel Hill August 2008 Aerosols: What is measurable and by what remote sensing technique? Omar Torres.
Figure 1. (left) Direct comparison of CCN concentration adjusted to 0.4% supersaturation and 499 nm AOD, both observed from ≤1 km altitudes during ARCTAS.
Direct aerosol radiative forcing based on combined A-Train observations and comparisons to IPCC-2007 results Jens Redemann, Y. Shinozuka, M. Vaughan, P.
Optical properties Satellite observation ? T,H 2 O… From dust microphysical properties to dust hyperspectral infrared remote sensing Clémence Pierangelo.
Measuring UV aerosol absorption. Why is aerosol UV absorption important ? Change in boundary layer ozone mixing ratios as a result of direct aerosol forcing.
The Second TEMPO Science Team Meeting Physical Basis of the Near-UV Aerosol Algorithm Omar Torres NASA Goddard Space Flight Center Atmospheric Chemistry.
UV Aerosol Product Status and Outlook Omar Torres and Changwoo Ahn OMI Science Team Meeting Outline -Status -Product Assessment OMI-MODIS Comparison OMI-Aeronet.
Fog- and cloud-induced aerosol modification observed by the Aerosol Robotic Network (AERONET) Thomas F. Eck (Code 618 NASA GSFC) and Brent N. Holben (Code.
Livingston et al. EGU General Assembly April 2007 Comparison of airborne sunphotometer and satellite sensor retrievals of aerosol optical depth during.
4STAR: Spectrometer for Sky-Scanning, Sun- Tracking Atmospheric Research Results from Test-flight Series PNNLNASA AmesNASA GSFC B. SchmidS. DunaganS. Sinyuk.
Image Interpretation Color Composites Terra, July 6, 2002 Engel-Cox, J. et al Atmospheric Environment.
Redemann, ICARTT workshop, Durham, NH, Aug.9-12, 2005 Airborne measurements of spectral direct aerosol radiative forcing - a new aerosol gradient method.
Breakout Group on Aerosol Optical Properties & Radiative Effects of MILAGRO Science Meeting, Oct 2006, Boulder, CO Chair: Phil Russell Co-Chair:
MODIS OMI CALIPSO AATS AOD above Lake Tahoe F (  z 2 ) AOD(  z 2 ) F (  z 1 ) AOD(  z 1 ) CAR circles AATS-HiGEAR comparison (below left) includes.
Summary of ARCTAS P-3 Data Flight #21 Flown 7 Jul 2008 Phil Russell, NASA Ames with contributions from many, many experimenters, modelers, forecasters,
Airborne sunphotometer (AATS-14) measurements in ARCTAS - first insights into their combined use with satellite observations to study Arctic aerosol radiative.
For INTEX-B/MILAGRO the J31 was equipped to measure solar energy and how that energy is affected by atmospheric constituents and Earth's surfaces. Because.
Estimating PM 2.5 from MODIS and MISR AOD Aaron van Donkelaar and Randall Martin March 2009.
4STAR: Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research A collaboration involving: PNNL: Connor J. Flynn, B. Schmid, E. Kassianov NASA.
Some Applications of Satellite Remote Sensing for Air Quality: Implications for a Geostationary Constellation Randall Martin, Dalhousie and Harvard-Smithsonian.
With contributions from: Jens Redemann, John Livingston, Yohei Shinozuka, Tony Clarke, Eike Bierwirth, Sebastian Schmidt, Ralph Kahn, Charles Gatebe, Alexei.
Jetstream 31 (J31) in INTEX-B/MILAGRO. Campaign Context: In March 2006, INTEX-B/MILAGRO studied pollution from Mexico City and regional biomass burning,
II GALION workshop - Geneva, Switzerland – September 21-23, 2010 EARLINET contribution to SDS-WAS Europe – North Africa regional node Lucia Mona Istituto.
Direct aerosol radiative effects based on combined A-Train observations Jens Redemann, Y. Shinozuka, J. Livingston, M. Vaughan, P. Russell, M.Kacenelenbogen,
AEROCOM AODs are systematically smaller than MODIS, with slightly larger/smaller differences in winter/summer. Aerosol optical properties are difficult.
Review of PM2.5/AOD Relationships
Airborne Sunphotometry and Closure Studies during the SAFARI-2000 Dry Season Campaign B. Schmid BAER/NASA Ames Research Center, Moffett Field, CA, USA.
Airborne Sunphotometry and Closure Studies in the SAFARI-2000 Dry Season Campaign B. Schmid 1, P.B. Russell 2, P.Pilewskie 2, J. Redemann 1, P.V. Hobbs.
With contributions from: Jens Redemann, John Livingston, Yohei Shinozuka, Steve Howell, Cam McNaughton, Eike Bierwirth, Sebastian Schmidt, Ralph Kahn,
Phil Russell 1, John Livingston 2, Beat Schmid 3, Jens Redemann 4, Stephanie Ramirez 4, Qin Zhang 4 and many other contributors 10 Years of Studies Comparing.
March 29 – April 1, INTEX-NA Workshop Aerosol and Cloud Spatial Distributions and Microphysical Properties Bruce Anderson, Lee Thornhill, Gao.
Jetstream-31 (J31) in ITCT-INTEX (Intercontinental Transport and Chemical Transformation- Intercontinental Chemical Transport Experiment) J31 GOALS in.
Modeling the emission, transport, and optical properties of Asian dust storms using coupled CAM/CARMA model Lin Su and Owen B. Toon Laboratory for Atmospheric.
Page 1 © Crown copyright 2004 Aircraft observations of Biomass burning aerosol Ben Johnson, Simon Osborne & Jim Haywood AMMA SOP0 Meeting, Exeter, 15 th.
Pushing the limits of dark-target aerosol remote sensing from MODIS Robert C. Levy (SSAI and 613.2) Contributors: S. Mattoo (SSAI), L. Remer (NASA), R.
Horizontal variability of aerosol optical properties observed during the ARCTAS airborne experiment Yohei Shinozuka 1*, Jens Redemann 1, Phil Russell 2,
Challenges in remote sensing of CCN concentration An assessment based on airborne observations of AOD, CCN, chemical composition, size distribution, light.
Characterization of the Station Fire, Los Angeles Aug. – Sept NASA Team MODIS Data products: Robert Levy Lorraine Remer N. Christina Hsu Charles.
Global Air Pollution Inferred from Satellite Remote Sensing Randall Martin, Dalhousie and Harvard-Smithsonian with contributions from Aaron van Donkelaar,
J. Redemann 1, B. Schmid 1, J.A. Eilers 2, R. Kahn 3, R.C. Levy 4,5, P.B. Russell 2, J.M. Livingston 6, P.V. Hobbs 7, W.L. Smith Jr. 8, B.N. Holben 4 1.
The study of cloud and aerosol properties during CalNex using newly developed spectral methods Patrick J. McBride, Samuel LeBlanc, K. Sebastian Schmidt,
Aerosol optical properties measured from aircraft, satellites and the ground during ARCTAS - their relationship to CCN, aerosol chemistry and smoke type.
Studying the radiative environment of individual biomass burning fire plumes using multi-platform observations: an example ARCTAS case study on June 30,
Jens Redemann 1, B. Schmid 1, J. M. Livingston 2, P. B. Russell 3, J. A. Eilers 3, P. V. Hobbs 4, R. Kahn 5, W. L. Smith Jr. 6, B. N. Holben 7, C.K. Rutledge.
Main Topic: Vertical Characterization of Aerosols Sub-topic: Tropospheric and Stratospheric Aerosol Erin Robinson, July5, 2010.
Vertically resolved CALIPSO-CloudSat aerosol extinction coefficient in the marine boundary layer and its co-variability with MODIS cloud retrievals David.
Fourth TEMPO Science Team Meeting
N. Bousserez, R. V. Martin, L. N. Lamsal, J. Mao, R. Cohen, and B. R
An overview of J-31 measurements during the INTEX-B/MILAGRO campaign
Need for TEMPO-ABI Synergy
Modelling the radiative impact of aerosols from biomass burning during SAFARI-2000   Gunnar Myhre, Terje K. Berntsen, James M. Haywood, Jostein K. Sundet,
Presentation transcript:

Aerosol optical properties measured from aircraft, satellites and the ground during ARCTAS - their relationship to aerosol chemistry and smoke type Yohei Shinozuka*, Jens Redemann, John Livingston, Phil Russell, Roy Johnson, S Ramachandran (NASA Ames), Tony Clarke, Cameron M c Naughton, Steffen Freitag, Steve Howell, Volodia Kapustin, Vera Brekhovskikh (University of Hawai’i), Brent Holben, Norm O'Neill, Bruce McArthur and Alain Royer (AERONET)

In this talk… Consistency check among the P-3 aircraft, ground and satellite observations of spectral aerosol optical depth (AOD) Optical characterization of aerosol composition and smoke type

CONSISTENCY CHECK AATS-14

An example of extinction profile See also HSRL talk. 350 (Surface) AOD below P-3: (150 m * 30.5 Mm -1 ) AOD above P-3 (measured with AATS-14): Layer AOD over aircraft altitudes (500 – 6250 m GPS) : at 550 nm PRELIMINARY DATA Clarke, M c Naughton, Freitag, Howell et al.

HiGEAR layer AOD was typically within 10% of the AATS’s for the 35 spiral vertical profiles with altitude gain/loss greater than 1 km under clear sky with AATS and HiGEAR instruments running. PRELIMINARY +10% :1 agreement -10%

Time = HiGEAR Dry Scattering 4000 Mm -1 at 550 nm, AATS AOD 2.5 at 519 nm in the smoke. The high spatial variability prevented agreement between AATS and HiGEAR. 21:27 21:37 Marker size proportional to dry scattering Camsell & Viking fires north of Lake Athabasca

PEARL at Eureka Saturn Island off Vancouver Fort McMurray AERONET PIs: Holben, O'Neill, McArthur and Royer P-3 and AERONET AODs agreed within 0 (excellent!) – 0.02 (good) during 3 fly-over events, at all wavelengths but 1.6 um.

nm 1:1 -15% % MODIS 3-km resolution product from Remer and Mattoo. (HiGEAR extinction * radar altitude) MODIS MODIS underestimated the AOD in some pixels.

MISR Many more validation opportunities with MODIS, MISR, OMI and CALIPSO are being looked into. See Redemann’s talk and poster.

AEROSOL COMPOSITION AND SMOKE TYPE

Dark smoke from flaming fires White smoke from smoldering fires White smoldering and black flaming identified based on Tony Clarke’s flight report.

Dark smoke from flaming fires White smoke from smoldering fires Aerosol evolution in downwind transport? Characterization of smoke types and age with the wavelength dependence of scattering and SSA Smoke after evolution, or pollution from other sources? To be investigated.

Summary AATS and HiGEAR layer AODs typically agreed within 10% Smoke can prevent AOD agreement. P-3 and AERONET AODs agreed within 0 – 0.02 for all visible wavelengths for 3 of the fly-over events. Comparison with satellite observations is in progress. Smoke type and age may be characterized by the wavelength dependence of scattering and SSA.