【 May. 20th. 2009. CS QCD II 】 N. Yasutake (NAOJ) 安武 伸俊 N. Yasutake (NAOJ) 安武 伸俊 The pasta structure of quark-hadron phase transition and the effects on.

Slides:



Advertisements
Similar presentations
Supported by DOE 11/22/2011 QGP viscosity at RHIC and LHC energies 1 Huichao Song 宋慧超 Seminar at the Interdisciplinary Center for Theoretical Study, USTC.
Advertisements

Questions and Probems. Matter inside protoneutron stars Hydrostatic equilibrium in the protoneutron star: Rough estimate of the central pressure is: Note.
Nuclear “Pasta” in Compact Stars Hidetaka Sonoda University of Tokyo Theoretical Astrophysics Group Collaborators (G. Watanabe, K. Sato, K. Yasuoka, T.
Toshiki Maruyama (JAEA) Nobutoshi Yasutake (Chiba Inst. of Tech.) Minoru Okamoto (Univ. of Tsukuba & JAEA ) Toshitaka Tatsumi (Kyoto Univ.) Structures.
R. Yoshiike Collaborator: K. Nishiyama, T. Tatsumi (Kyoto University)
Kazuya Nishiyama Kyoto University Collaborator: Toshitaka Tatsumi, Shintaro Karasawa, Ryo Yoshiike Quarks and Compact Stars 2014 October 2014, PKU, Beijing.
Hyperon Suppression in Hadron- Quark Mixed Phase T. Maruyama (JAEA), S. Chiba (JAEA), H.-J. Schhulze (INFN-Catania), T. Tatsumi (Kyoto U.) 1 Property of.
Hyperon-Quark Mixed Phase in Compact Stars T. Maruyama* (JAEA), T. Tatsumi (Kyoto U), H.-J. Schulze (INFN), S. Chiba (JAEA)‏ *supported by Tsukuba Univ.
Structured Mixed Phase of Nuclear Matter Toshiki Maruyama (JAEA) In collaboration with S. Chiba, T. Tatsumi, D.N. Voskresensky, T. Tanigawa, T. Endo, H.-J.
The regularization dependence on the phase diagram in the Nambu-Jona-Lasinio model Hiroaki Kohyama (CYCU)
Magnetized Strange- Quark-Matter at Finite Temperature July 18, 2012 Latin American Workshop on High-Energy-Physics: Particles and Strings MSc. Ernesto.
23 Jun. 2010Kenji Morita, GSI / XQCD20101 Mass shift of charmonium near QCD phase transition and its implication to relativistic heavy ion collisions Kenji.
Chiral symmetry breaking and structure of quark droplets
Cooling of Compact Stars with Color Superconducting Quark Matter Tsuneo Noda (Kurume Institute of Technology) Collaboration with N. Yasutake (Chiba Institute.
Naoki Yamamoto (Univ. of Tokyo) Tetsuo Hatsuda (Univ. of Tokyo) Motoi Tachibana (Saga Univ.) Gordon Baym (Univ. of Illinois) Phys. Rev. Lett. 97 (2006)
Xia Zhou & Xiao-ping Zheng The deconfinement phase transition in the interior of neutron stars Huazhong Normal University May 21, 2009 CSQCD Ⅱ.
Metastability of Hadronic Compact Stars I. Vidaña & I. Bombaci, P. K. Panda, C. Providência “The Complex Physics of Compact Stars” Ladek Zdroj, Poland,
The high density QCD phase transition in compact stars Giuseppe Pagliara Institut für Theoretische Physik Heidelberg, Germany Excited QCD 2010, Tatra National.
Thermal Evolution of Rotating neutron Stars and Signal of Quark Deconfinement Henan University, Kaifeng, China Miao Kang.
A Crust with Nuggets Sanjay Reddy Los Alamos National Laboratory Jaikumar, Reddy & Steiner, PRL 96, (2006) SQM, UCLA, March (2006)
Constraining neutron star properties with perturbative QCD Aleksi Vuorinen University of Helsinki University of Oxford Main reference: Kurkela,
Ferromagnetism in quark matter and origin of magnetic field in compact stars Toshitaka Tatsumi (Kyoto U.) (for a recent review, hep-ph/ ) I. Introduction.
1 Debye screened QGP QCD : confined Chiral Condensate Quark Potential Deconfinement and Chiral Symmetry restoration expected within QCD mm symmetryChiral.
The structure of neutron star by using the quark-meson coupling model Heavy Ion Meeting ( ) C. Y. Ryu Soongsil University, Korea.
1 On the importance of nucleation for the formation of quark cores inside compact stars Bruno Werneck Mintz* Eduardo Souza Fraga Universidade Federal do.
Dense Stellar Matter Strange Quark Matter driven by Kaon Condensation Hyun Kyu Lee Hanyang University Kyungmin Kim HKL and Mannque Rho arXiv:
Neutron stars swollen under strong magnetic fields Chung-Yeol Ryu Soongsil University, Seoul, Korea Vela pulsar.
QUARK MATTER SYMMETRY ENERGY AND QUARK STARS Peng-cheng Chu ( 初鹏程 ) (INPAC and Department of Physics, Shanghai Jiao Tong University.
Gravitational waves and neutrino emission from the merger of binary neutron stars Kenta Kiuchi Collaboration with Y. Sekiguchi, K. Kyutoku, M. Shibata.
Institut d’Astronomie et d’Astrophysique Université Libre de Bruxelles Structure of neutron stars with unified equations of state Anthea F. FANTINA Nicolas.
Pengfei Zhuang Physics Department, Tsinghua University, Beijing
Hadron to Quark Phase Transition in the Global Color Symmetry Model of QCD Yu-xin Liu Department of Physics, Peking University Collaborators: Guo H., Gao.
Axel Drees, Stony Brook University, Lectures at Trento June 16-20, 2008 Electromagnetic Radiation form High Energy Heavy Ion Collisions I.Lecture:Study.
Probing Neutron Star EOS in Gravitational Waves & Gamma-ray Bursts Kim Young-Min, Cho Hee-Suk Lee Chang.-Hwan, Park Hong-Jo (Pusan National University)
Lattice Gauge Theory for the Quark-Gluon Plasma Sourendu Gupta TIFR.
Chiral phase transition and chemical freeze out Chiral phase transition and chemical freeze out.
Compact Stars as Sources of Gravitational Waves Y. Kojima (Hiroshima Univ.) 小嶌康史 ( 広島大学理学研究科 ) 第 3 回 TAMA シンポジュウム(柏) 2003 年 2 月 6 - 7 日.
Initial Data for Magnetized Stars in General Relativity Eric Hirschmann, BYU MG12, Paris, July 2009.
Hadron-Quark phase transition in high-mass neutron stars Gustavo Contrera (IFLP-CONICET & FCAGLP, La Plata, Argentina) Milva Orsaria (FCAGLP, CONICET,
Color neutrality effects in the phase diagram of the PNJL model A. Gabriela Grunfeld Tandar Lab. – Buenos Aires - Argentina In collaboration with D. Blaschke.
Phase transition induced collapse of Neutron stars Kim, Hee Il Astronomy Program, SNU 13th Haengdang Symposium, 11/30/2007.
Many-body theory of Nuclear Matter and the Hyperon matter puzzle M. Baldo, INFN Catania.
Asymmetric Neutrino Reaction in Magnetized Proto-Neutron Stars in Fully Relativistic Approach Tomoyuki Maruyama BRS, Nihon Univ. (Japan) Tomoyuki Maruyama.
Hybrid proto-neutron stars within a static approach. O. E. Nicotra Dipartimento di Fisica e Astronomia Università di Catania and INFN.
Relativistic Stars with Magnetic Fields
Some theoretical aspects of Magnetars Monika Sinha Indian Institute of Technology Jodhpur.
Nucleosynthesis in decompressed Neutron stars crust matter Sarmistha Banik Collaborators: Smruti Smita Lenka & B. Hareesh Gautham BITS-PILANI, Hyderabad.
Compact Stars With a Dyson- Schwinger Quark Model 1 陈 欢 Collaborate with 魏金标( CUG ), M. Baldo, F. Burgio and H.-J. Schulze ( INFN ). 2015“ 中子星与核天体物理 ”
When a star dies…. Introduction What are compact objects? –White dwarf, neutron stars & black holes Why study? –Because it’s fun! –Test of physics in.
Department of Physics, Sungkyunkwan University C. Y. Ryu, C. H. Hyun, and S. W. Hong Application of the Quark-meson coupling model to dense nuclear matter.
PHYS.NANKAI UNIVERSITY Relativistic equation of state of neutron star matter and supernova matter H. Shen H. Shen Nankai University, Tianjin, China 申虹.
Axel Drees, University Stony Brook, PHY 551 S2003 Heavy Ion Physics at Collider Energies I.Introduction to heavy ion physics II.Experimental approach and.
高密度クォーク物質における カイラル凝縮とカラー超伝導の競 合 M. Kitazawa,T. Koide,Y. Nemoto and T.K. Prog. of Theor. Phys., 108, 929(2002) 国広 悌二 ( 京大基研) 東大特別講義 2005 年 12 月 5-7 日 Ref.
Crossover Workshop ( , 名大) T.Takatsuka (Iwate Univ.) □ Motivations □ New way of approach □ Some results and remarks Equation of state for hadron-quark.
1 NJL model at finite temperature and chemical potential in dimensional regularization T. Fujihara, T. Inagaki, D. Kimura : Hiroshima Univ.. Alexander.
Elliptic flow from initial states of fast nuclei. A.B. Kaidalov ITEP, Moscow (based on papers with K.Boreskov and O.Kancheli) K.Boreskov and O.Kancheli)
Relativistic EOS for Supernova Simulations
Quark deconfinement in compact stars:
Quark deconfinement in compact stars: University of Ferrara, Italy
EOS discussion.
Stellar core collapse with QCD phase transition
W.G.Newton1, J.R.Stone1,2 1University of Oxford, UK
Properties of the Quark-Gluon Plasma
Color Superconductivity in dense quark matter
INFN Sezione di Catania
Phase transitions in neutron stars with BHF
Equation of State for Hadron-Quark Mixed Phase and Stellar Collapse
A possible approach to the CEP location
Protoneutron stars in the Brueckner-Hartree-Fock approach and
Effects of the φ-meson on the hyperon production in the hyperon star
Presentation transcript:

【 May. 20th CS QCD II 】 N. Yasutake (NAOJ) 安武 伸俊 N. Yasutake (NAOJ) 安武 伸俊 The pasta structure of quark-hadron phase transition and the effects on magnetised compact objects The pasta structure of quark-hadron phase transition and the effects on magnetised compact objects ・ Introduction A. Finite size effects on the quark-hadron phase transition (NY, Maruyama, Tatsumi in prep.) (NY, Maruyama, Tatsumi in prep.) B. Rotating compact stars w/wo magnetic field (NY, Hashimoto, Eriguchi, 2005 PTP; NY, Kiuchi, Kotake, 2009 MNRAS submitted, etc…) (NY, Hashimoto, Eriguchi, 2005 PTP; NY, Kiuchi, Kotake, 2009 MNRAS submitted, etc…) C. Chiral symmetry restoration in proto-neutron stars (NY & Kashiwa 2009 PRD) (NY & Kashiwa 2009 PRD) ・ Summary ・ Introduction A. Finite size effects on the quark-hadron phase transition (NY, Maruyama, Tatsumi in prep.) (NY, Maruyama, Tatsumi in prep.) B. Rotating compact stars w/wo magnetic field (NY, Hashimoto, Eriguchi, 2005 PTP; NY, Kiuchi, Kotake, 2009 MNRAS submitted, etc…) (NY, Hashimoto, Eriguchi, 2005 PTP; NY, Kiuchi, Kotake, 2009 MNRAS submitted, etc…) C. Chiral symmetry restoration in proto-neutron stars (NY & Kashiwa 2009 PRD) (NY & Kashiwa 2009 PRD) ・ Summary

2 4.3km ・100m below ground ・ The LHC has started !!  STOP…!? Y. Nambu (1921 ~ now) 2008 Nobel Prize “experiment”“experiment” “numerical experiment” “effective theory” Lattice QCD (KEK:IBM Blue Gene) “HOT TPICS IN QUARK NUCLEAR PHYSICS” “HOT TPICS IN QUARK NUCLEAR PHYSICS”“Others”“Others” Ads/CFT correspondence …

3 Compact stars topics Supernova remnants Supernova remnants Non-spherical effects are fundamentally important for SN mechanism !! Non-spherical effects are fundamentally important for SN mechanism !!  “ rotation ” and “ magnetic field ” 3D simulation of SN (Iwakami et al. 2008) Magnetars (B ~ G at surface) Magnetars (B ~ G at surface) Origin ? Origin ? What kind of matter in the core ?  Structure ? What kind of matter in the core ?  Structure ? Our study is “ Magnetized Rotating compact stars w/wo exotic matter ”

4 A. Finite size effects on the quark-hadron phase transition A. cf. Maruyama et al., PRD 2007 (T=0) NY, Maruyama, Tatsumi, in prep. (T≠0) cf. Maruyama et al., PRD 2007 (T=0) NY, Maruyama, Tatsumi, in prep. (T≠0)

5 Pasta Structure In the mixed phase of 1st order phase transitions, non-uniform “Pasta” structure is expected. In the mixed phase of 1st order phase transitions, non-uniform “Pasta” structure is expected. These structures will appear at Liquid-gas : supernova matter ① Liquid-gas : supernova matter ② Neutron drip: neutron star inner crust ③ Meson condensation: neutron star outer core ④ Quark-hadron: neutron star inner core (Hybrid star)  Today’s Talk  Today’s Talk

6 U O U+ UO UO 2 UO 3 O- Quasi-chemical representation ( “ chemical picture ” ) Multi-molecular model (Liquid & Gas) U + O + O 2 + UO + UO 2 + UO 3 U + + UO + + UO O − + UO 3 − + e − U + 2O  UO 2 2O  O 2 U + + e  U UO 3 + e  UO 3 –... “Strange” stars Non-ideal U– O plasma u, d, s, p, n, e  u,  d,  s,  p,  n,  e u + e  d d  s p + e  n n  u + 2d (p  2u + d)  U + 2  U =  UO2 2  O   O2  U+ +  e =  U  UO3 +  e =  UO3–  Iosilevskiy et al.

7 EOSs ① : MIT bag model and BHF hadron EOS Maruyama et al. (2007) PRD 76, Hadron phase: Brueckner Hartree Fock (Baldo et al.(1999), with hyperons) + Quark phase: MIT model (Free fermions - bag constant) For mixed phase ・ Balance of “Coulomb interaction” and “Surface tension” ・ Electrical charge neutrality ・ Baryon number conservation ・ Phase equilibrium

8 EOSs ② : Uncertainty for surface tension Theoretical estimation on the MIT bag model for strangelets (Farhi & Jaffe 1984; Berger & Jaffe 1987) Theoretical estimation on the MIT bag model for strangelets (Farhi & Jaffe 1984; Berger & Jaffe 1987) Lattice gauge simulations at finite temperature (Kajantie et al. 1991; Huang et al. 1990, 1991) Lattice gauge simulations at finite temperature (Kajantie et al. 1991; Huang et al. 1990, 1991) σ= 10 – 100 MeV/fm 2 σ= 10 – 100 MeV/fm 2 However, for σ> 40 MeV/fm 2, EOSs are almost same as ones under Maxwell construction However, for σ> 40 MeV/fm 2, EOSs are almost same as ones under Maxwell construction (Maruyama et al. 2007). (Maruyama et al. 2007). We choose σ= 10, 40 MeV/fm 2

9 EOSs ③ : Brueckner Hartree Fock (Baldo et al.(1999), w/wo hyperon) Qaurk-Hadron pasta EOSs “Droplet” does not appears. “Rod” does not appears. BHF(with hyperon) QH pasta (σ=10 MeV/fm 2 ) QH pasta (σ=40 MeV/fm 2 ) BHF(without hyperon) HARD EOS ① Number of hyperons are suppressed by appearance of quark matter.  EOS becomes harder than only hyperon case. ② For strong surface tension  EOS becomes 1 st phase transition like (Maxwell condition-like). We expand them to “finite temperature” cases.

10 EOS with Quark-Hadron pasta at finite temperature (T=30 MeV, Yl=0) 1.finite T  more Maxwel-like EOS 2.Softer EOS region in mixed phase HM QM Mixed

11 B. Rotating compact stars w/wo magnetic field B. cf. NY, Hashimoto, Eriguchi, PTP 2005 NY, Kiuchi, Kotake, MNRAS 2009 submitted cf. NY, Hashimoto, Eriguchi, PTP 2005 NY, Kiuchi, Kotake, MNRAS 2009 submitted

12 Magnetized rotating star equilibrium 【 Full GR, rotation 】 + 【 Quark Matter 】 NY, Hashimoto, Eriguchi (2005) 【 Full GR, toroidal magnetic field, rotation 】 + 【 Quark Matter 】 NY, Kiuchi, Kotake (2009), submitted 【 Full GR, rotation 】 + 【 Quark Matter 】 NY, Hashimoto, Eriguchi (2005) 【 Full GR, toroidal magnetic field, rotation 】 + 【 Quark Matter 】 NY, Kiuchi, Kotake (2009), submitted Unfortunately, there is not the formulation for 【 Full GR, toroidal + poloidal magnetic field, rotation 】 ! ! Unfortunately, there is not the formulation for 【 Full GR, toroidal + poloidal magnetic field, rotation 】 ! ! Assumptions 1. stationary, aximetric star 2. perfect fluid, infinite conductivity 3. no meridional flow 4. barotropic EOS

13 Neutron Stars with hyperons Neutron Stars without hyperons M 0 =1.45Ms, Φ=5×10 29 G cm 2 M =1.31 Ms B max =7.1×10 17 G M =1.32 Ms B max =4.6×10 17 G ρ0ρ0 ρ0ρ0 BΦBΦ BΦBΦ

14 Hybrid Star : B=100 MeV/fm 3, σ=1 0 MeV/fm 2 Hybrid Star : B=100 MeV/fm 3, σ=4 0 MeV/fm 2 M 0 =1.45Ms, Φ=5×10 29 G cm 2 M =1.30 Ms B max =6.2×10 17 G M =1.31 Ms B max =6.2×10 17 G BΦBΦ BΦBΦ ρ0ρ0 ρ0ρ0

15 Density distributions for equatorial direction for equatorial direction Mixed Phase

16 C. Chiral symmetry restoration in proto-neutron stars in proto-neutron starsC. Chiral symmetry restoration in proto-neutron stars in proto-neutron stars cf. “ Lepton effects on the proto-neutron stars with the hadron-quark mixed phase in the Nambu-Jona-Lasinio model ” NY, Kashiwa, PRD 2009 cf. “ Lepton effects on the proto-neutron stars with the hadron-quark mixed phase in the Nambu-Jona-Lasinio model ” NY, Kashiwa, PRD 2009

17 3-flavor NJL model ① (only chiral phase transitions) vector Gv ・・・ vector coupling constant  parameter λ ・・・ Gelll-Mann matrix

18 EOS and Chiral symmetry restoration Hadron (Shen et al.1998) Quark (SU(3) NJL) High Yl  High Ye  low n s  chiral restoration of s-quark is suppressed  Hard EOS !! High Yl  High Ye  low n n  repulsive nuclear force is suppressed  Soft EOS !!

19 Quark-Hadron phase transition Maxwell construction bulk Gibbs construction  large surface tension  small surface tension “finite size effects”

20 M-n BC relations Hadron (Shen et al.1998) Hybrid (bulk Gibbs) Hybrid (Maxwell) Ejection of leptons  The EOS becomes HARD !! Ejection of leptons Ejection of leptons  The EOSs become SOFT !!

21 Summary & Discussion

22 Summary & Discussion A: “Pasta structures on the quark-hadron phase transition” ① Number of hyperons are suppressed by appearance of quark matter.  EOS becomes harder than only hyperon case.  EOS becomes harder than only hyperon case. ② Strong surface tension  EOS becomes Maxwell condition-like.  EOS becomes Maxwell condition-like. ③ Finite temperature cases.  EOS becomes more Maxwell condition-like.  EOS becomes more Maxwell condition-like. B: “Structures of magnetars with QH pasta” Clearly, distributions of magnetic field are different between w/wo phase transition. Clearly, distributions of magnetic field are different between w/wo phase transition. Strong magnetic field may change EOSs ? Strong magnetic field may change EOSs ? Poloidal magnetic field? Other origins of magnetic field? Poloidal magnetic field? Other origins of magnetic field? Astrophysical phenomena? (SN, GRB, NS cooling curve/spin- down rate) Astrophysical phenomena? (SN, GRB, NS cooling curve/spin- down rate) A: “Pasta structures on the quark-hadron phase transition” ① Number of hyperons are suppressed by appearance of quark matter.  EOS becomes harder than only hyperon case.  EOS becomes harder than only hyperon case. ② Strong surface tension  EOS becomes Maxwell condition-like.  EOS becomes Maxwell condition-like. ③ Finite temperature cases.  EOS becomes more Maxwell condition-like.  EOS becomes more Maxwell condition-like. B: “Structures of magnetars with QH pasta” Clearly, distributions of magnetic field are different between w/wo phase transition. Clearly, distributions of magnetic field are different between w/wo phase transition. Strong magnetic field may change EOSs ? Strong magnetic field may change EOSs ? Poloidal magnetic field? Other origins of magnetic field? Poloidal magnetic field? Other origins of magnetic field? Astrophysical phenomena? (SN, GRB, NS cooling curve/spin- down rate) Astrophysical phenomena? (SN, GRB, NS cooling curve/spin- down rate)

23 C: “The Chiral restoration on the structures of proto-compact stars” With PT : small Yl  soft EOS With PT : small Yl  soft EOS Without PT : small Yl  hard EOS Without PT : small Yl  hard EOS This will change dynamics of SN, GRB. This will change dynamics of SN, GRB. How about color super conductivity? How about color super conductivity? C: “The Chiral restoration on the structures of proto-compact stars” With PT : small Yl  soft EOS With PT : small Yl  soft EOS Without PT : small Yl  hard EOS Without PT : small Yl  hard EOS This will change dynamics of SN, GRB. This will change dynamics of SN, GRB. How about color super conductivity? How about color super conductivity? 謝謝 ! D: “Other topics” Gravitational wave ? [NY et al. 2007, etc. ] Gravitational wave ? [NY et al. 2007, etc. ] NS+NS, NS+BH binaries NS+NS, NS+BH binaries Neutrino emission ? [Fischer et al. 2008, etc.] Neutrino emission ? [Fischer et al. 2008, etc.] D: “Other topics” Gravitational wave ? [NY et al. 2007, etc. ] Gravitational wave ? [NY et al. 2007, etc. ] NS+NS, NS+BH binaries NS+NS, NS+BH binaries Neutrino emission ? [Fischer et al. 2008, etc.] Neutrino emission ? [Fischer et al. 2008, etc.]