HBr, angular distribution analysis E(0) Updated, 24.12.2013.

Slides:



Advertisements
Similar presentations
HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4 Prediction calculations……………………………………………………5.
Advertisements

Analysis of the Visible Absorption Spectrum of I 2 in Inert Solvents Using a Physical Model Joel Tellinghuisen Department of Chemistry Vanderbilt University.
Photodissociation of Methyl Nitrite from the S 2 state -- Ion Images and Vector Correlations Aidan Klobuchar, and Jeffrey Bartz Department of Chemistry,
Agust,www,....january09/PPT aka.ppt Agust,heima,... january09/XLS ak.xls About enhanced I( 35 Cl + )/I(H 35 Cl + ) values in a) g 3  + (1),v´=0.
Applications of photoelectron velocity map imaging at high resolution or Photoionization dynamics of NH 3 (B 1 E  ) Katharine L. Reid (Paul Hockett, Mick.
Frequency and Time Domain Studies of Toluene Adrian M. Gardner, Alistair M. Green, Julia A. Davies, Katharine L. Reid and Timothy G. Wright.
TeV blazars and their distance E. Prandini, Padova University & INFN G. Bonnoli, L. Maraschi, M. Mariotti and F. Tavecchio Cosmic Radiation Fields - Sources.
Jelena Kova č evi ć Astronomical Observatory Belgrade.
CH3Br, )“New” C atomic lines 2)Summary of C atomic line observations and “nonobservations” agust,heima,....Dec09/CH3BR-Overall (C) km agust,www,...Dec09/PPT aak.ppt.
CH2Br2: 1) Absorption 2) REMPI scans: overview (slides 12-15) 3) C+ REMPI vs absorption spectrum agust,www,....ch2br2/PPT ak.ppt agust,heima,...CH2Br2/PXP ak.pxp.
1) HBr 1D (2+n)REMPI spectra simulations 2) Energy level shifts and intensity ratios for the F(v´=1) state agust,www,....Jan11/PPT ak.ppt agust,heima,....Jan11/XLS ak.xls.
HCl, H+ + Cl HCl+ F(HCl*) X(HCl): agust,heima,....REMPI/HCl/HCl,agust07-/HCl-Potentials ak.pxp agust,www,....rempi/hcl/HCl,agust07-/HCl-Potentials ak.ppt.
cm CH 3 Br 10k 40k 70k CH 3 Br* C*( 1 D 2 )+H 2 +HBr C**( 1 D 2 )+H 2 +HBr J’’ k 150k C + +H 2 +HBr+e.
4141 Fluorescence Relative Intensity Wavelength (nm) FIGURE 1 Fluorescence spectra from serotonin (5  mol dm -3 ) excited at 300 nm in solutions at pH.
HBr, F1D2, v´=1
II. Multi- photon excitation / ionization processes
2 AB AB + + e AB* AB +* + e n h or n 1 h 1 + n 2 h 2 + : -absorption 1h  n h  -ionization Energy.
CH 3 Br: & Literature survey on Direct ion-pair state excitation vs Ion pair fomation via initial Rydberg state excitation (Rydberg doorway.
Things to address in our CH 3 Br studies / publication(s) Main reference is T. Ridley et al., JPC A, 112, 7170, (2008):
CF3Br agust,heima,....CF3Br/Sept10/PXP ks/Br 1D-REMPImW ks ak.pxp agust,heima,....CF3Br/Sept10/PXP ks/Br 1D-REMPImW ks ak.pxp.
1 CH3Br, C, C* and C** dissociation formation channels vs C+ spectra Explanation for enhanced C+ Rydberg state spectra in the cm-1.
Agust,heima,...january09/PPT ak.ppt cm cm-1 F, v´= cm-1 Agust,heima,..january09/PXP ak.pxp.
Fig. 1. Fig. 2 Fig. 3 Fig. 4 Fig. 5 Comments: Judging from the unnormalized spectra (figs 4-5) C +, CH + and C 2 + (possibly also slight H + (?))
H35Cl, j(0+) intensity ratio analysis and comparison of experimental data agust,www,....Jan11/PPT ak.ppt agust,heima,...Jan11/Evaluation of coupling.
HBr, (updated ; slide 12) V(m+i) /HBr+(v+) spectra analysis
TOF Mass Spectrometer &
PhD project overview - REMPI analyses of small, iodine containing molecules Helgi Rafn Hróðmarsson.
HCl, negative ion detections 1hv ion-pair spectra (slides 3-4) Loock´s prediction about H+ + Cl- formation channels(slides 5-6) Energetics vs Dye for V(v´= )
HI Relevant to the HI- Perturb.II paper:pages: H(2) ion intensities (system (b))………………………2-9
Experimental and Theoretical Investigations of HBr+He Rotational Energy Transfer M. H. Kabir, I. O. Antonov, J. M. Merritt, and M. C. Heaven Department.
V.L. Kashevarov. Crystal Collaboration Meeting, Mainz, September 2008 Photoproduction of    on protons ► Introduction ► Data analysis.
Plan for HBr VMI experiments in FORTH, autumn 2014 & progress -one and two-color experiments States to study……………………………………………….2-3 Rotational lines……………………………………………….4-5.
Eirík´s project(?) CH3I: agust,www,...rempi/ch3i/PPT ak.ppt ( )
PHOTOFRAGMENTATIONS, STATE INTERACTIONS AND ENERGETICS OF HALOGEN CONTAINING MOLECULES: TWO-DIMENSIONAL (2+n) REMPI ÁGÚST KVARAN, et al. Science Institute,
TWO-DIMENSIONAL (2+n) REMPI SPECTROSCOPY: STATE INTERACTIONS, PHOTOFRAGMENTATIONS AND ENERGETICS OF THE HYDROGEN HALIDES JINGMING LONG, HUASHENG WANG,
The study of two previous papers in REMPI sepectra Jingming Long
Eirík´s project(?) CH 3 I: agust,www,...rempi/ch3i/PPT ak.ppt ( )
VMI images –fitting Helgi Rafn Hróðmarsson. The purpose of this fitting procedure is to check whether the assumption that the angular distribution data.
HBr; Updated: Imaging experiments in Crete Labtop..C:……/Crete/HBr/PPT aka.pptx &
Double Resonance in the Rubidium Dimer : the 2 1  g state. A. Drozdova*, A.-R. Allouche, G. Wannous, P. Crozet and A.J. Ross Institut Lumière Matière,
HBr, V(m+8), one-color, VMI One-color: KER spectra VMI, V(m+8) vs J´(=J´´)…………………………………2 Branching ratios……………………………………………………………..3-4 Angular distributions………………………………………………………5-7.
HBr Energetics agust,www,....hbr/PPT ak.ppt agust, heima,...HBr/XLS ak.xls.
 0 life time analysis updates, preliminary results from Primex experiment 08/13/2007 I.Larin, Hall-B meeting.
Comparison of different VMI fitting formulas/procedures HRH – 29/7/14.
HBr, V(m+4) (and E(0)) (Updated ; slide: 24-6) 1)KER spectra vs J´ (slides 2-3) 2)I(H + + Br(1/2))/I(H + + Br(3/2)) vs. J´(slide 4) 3)Comparison.
Predissociation of the A 2  + state of the SH (SD) radical A.J. Orr-Ewing, R.A. Rose, C.-H. Yang, K. Vidma and D.H. Parker.
ALMA Cycle 0 Observation of Orion Radio Source I Tomoya Hirota (Mizusawa VLBI observatory, NAOJ) Mikyoung Kim (KVN,KASI) Yasutaka Kurono (ALMA,NAOJ) Mareki.
MOLECULAR SPECTROSCOPY
ISMS 2017 at CHAMPAIGN-URBANA, ILLINOIS
CH3Br, one-color exp.: CHn+, iBr+ and CiBr+ ions vs CH3Br(Ry) states: Content: pages:
S.V. Blazhevich1), I.V. Kolosova2), A.V. Noskov2)
CH3Br, one-color exp.: CHn+, iBr+ and CiBr+ ions vs CH3Br(Ry) states: Content: pages:
Vinylidene! Stephen Gibson,1 Benjamin Laws,1 Ravin Fernando,2
HBr, Angular distributions for V(m+i), i = 4-10; J´
Characterization of CHBrCl2 photolysis by velocity map imaging
Xiao Min Tong and Chii Dong Lin
° status report analysis details: overview; “where we are”; plans: before finalizing result.. I.Larin 02/13/2009.
Updated (p:15-16, refs. & p:50-51)
Content: - Comparison of CH3 and CH2 KER - KER assignment for the two color experiment dissociation at 270 nm and probing of CH3 at nm (211 transition)
H(0), one-color, VMI and slicing images
2 color VMI exp. CH3(X;v1v2v3v4) detection; hi
VMI-fitting results for V(m+i), i=4-10
6pp 3S- vs l / J´ Updated: One color, H+ detection: pages
HBr Mass resolved REMPI and Imaging REMPI.
1hv spectrum corrected/shifted
HBr The cm-1 system (slides 2-16)
KER predictions for Br+ images
CF3Br agust,www,....cf3br/PPT ak.ppt agust,heima,....Sept10/XLS ak.xls
Localization Precision in Stepwise Photobleaching Experiments
° status report analysis details: overview; “where we are”; plans: before finalizing result.. I.Larin 02/13/2009.
Presentation transcript:

HBr, angular distribution analysis E(0) Updated,

Peak “A”

E0,J´=3

E0,J´=4

Rydb. H + Br/Br* r(HX) J´´ v´´= 0 HX HX** J´ v´ E H + X - /Ion-pair/V v´,J´ H* + Br H* + Br* H + + Br H + + Br* 2 h resonance excitation 3 h dissociation / H* formation 4 h ionization / H + formation

2 h resonance excitation 3 h dissociation / H* formation According to :

where Unknown (variable in a fit) Unknown (variables in a fit)

BUT simpler for “non Q branches” (O, S) (i.e. for J´´  J´): 2 h resonance excitation 3 h dissociation / H* formation …. i.e. independent of the R´s

An alternative way to analyse the angular distribution data is by the procedure given by Chichinin et al.: -which involves the use of relative intensities of spectral lines I Q /I S and I Q /I O which could be derived from our REMPI spectra: i f ph HBr(Ji) HBr** H* + Br/Br*

1. Determine „b“ factor, via mass resolved REMPI spectra (see p: 9 ) from, 2. Determine alignment parameter A 20 (<=„b“ ) (P: 9, ) (43)(for J f = 1) (24) (25)

4. Determine the angular distribution for one-photon photodissociation of the unpolarized „f“ state (i.e.  (n,n ph )) from for k = 1 (one photon), where  (n) is the photofragment angular distribution produced by a multiphoton excitation via the intermediate state (i.e. angular distribution derived from our experiments) (see p: 6 in ) (1) ph 3. Determine angular distribution (  f (n)) via  –factor (  (f) ) determination for„f“(see slide 10): (P:6 (and 9), ) (30) See: ;J f = 1

1. Determine „b“ factor, via mass resolved REMPI spectra (see p: 9 ) from, Detailed analysis, see : agust,heima, …./PPT pptx a´ c´ d´ a´´ c´´ d´´

HBr; E(0) angular distribution analysis; Areas a´c´d´a"c"d" b**2 IO IQIS IQ/IOIQ/IS IQ/IO SO J´´LorentzGaussLorentz GaussLorentz J´(S)LorentzJ´(O) , , , ,735833, ,50,21, ,183454, , , ,666671,50, , , ,777844, ,250,1211,666671, , , , , , ,20, ,750, , , , ,168845, , , , ,80, , , , ,739515, , , , , , , , , ,13895, ,1250, , , , , , , , , , , ,8750, , , , ,10, , , , , , , , , ,90, , , , , , ,096 OVERLAP av b**21, , values with1, values V(m+4)av(av) 3 values1, ,19 av1,278447S(J´=2-8) ATH Gaussian fit to Q linesav1,159578O(J´=1-3) ERGO, (b**2) ca.:1,2 b: 1,095445or-1,

2. Determine alignment parameter A 20 (<=„b“ ) (P: 9, ) (43)(for J f = 1) (24) (25)

Alignment parameter A 20 : p:319 b A 20 (J f =1) A 20 (min) = -1 A 20 (max) =+0.5 b=1 Perpend. domin. b=-0.5 parallel. domin. Gr0,Lay0 <=

Alignment parameter A 20 : p:319 b factor A 20 (J f ) A 20 (min;J f =1) = -1 A 20 (max;J f =1) =+0.5 b = 1 Perpendicular dominant b=-0.5 parallel dominant J f = J f = Gr0,Lay0 <= Our A 20 values = A 20 (b = 1.1; b 2 = 1.2)

f <-<- i transition dominantly perpendicular transition, i.e.  3. Determine angular distribution (  f (n)) via  –factor (  (f) ) determination for„f“(see slide 10): (P:6 (and 9), ) (30) See:  (f) = -0, ;J f = 1

Gr1,Lay1<=   f (n; J f =1)

J´> 1: i.e.: ( -but to a first approximation (?)  L = 0 for L = 4,6,…. ERGO: the angular distribution shown on slide 18 holds for all J f ´s ! -in which case the alteration in angular distribution vs. J observed (Slide 2) is due to the photofragmentation step(?!)

Now what?! How do we derive  (n,n ph ) ? (1) ph How about a „fitting procedure“:

i.e. something like:  f i ph f Experiment  (ph) (1) + A ~ -for red coloured parameters unknown => derive  (ph)