Diagnostic capability of FG/SP Kiyoshi Ichimoto NAOJ Hinode workshop, 2007.12.8-10, Beijing.

Slides:



Advertisements
Similar presentations
T. Berger Solar-B FPP Solar & Astrophysics Laboratory FPP Overview NRL Meeting 18-Nov FPP Science Goals 2. Level 0 Requirements 3. FPP Instrument.
Advertisements

Helioseismology by Hinode(Solar-B) Takashi Sekii (NAOJ)
Evolution of Magnetic Setting in Flare Productive Active Regions Yixuan Li Space Weather Research Lab New Jersey Institute of Technology.
2006/4/17-20 Extended 17 th SOT meeting Azimuth ambiguity resolution from dBz/dz M. Kubo (ISAS/JAXA), K. Shimada (University of Tokyo), K. Ichimoto, S.
SDO/HMI multi-height velocity measurements Kaori Nagashima (MPS) Collaborators: L. Gizon, A. Birch, B. Löptien, S. Danilovic, R. Cameron (MPS), S. Couvidat.
Nonlinearity of the force-free parameter over active regions. M.Hagino and T.Sakurai National Astronomical Observatory of Japan, Solar Observatory.
High Altitude Observatory (HAO) – National Center for Atmospheric Research (NCAR) The National Center for Atmospheric Research is operated by the University.
Calibration-Diagnostics Spectral Photometric/Gain Polarimetric Empirical or hardware calibrators NIRSPC or G Disk or Corona.
1 Estimate on SOT light level in flight with throughput measurements in SOT sun tests T. Shimizu 1, T. Tarbell 2, T. Berger 2, Y. Suematsu 3, M. Kubo 1,
1 Estimate on SOT light level in flight with throughput measurements in SOT sun tests T. Shimizu 1, T. Tarbell 2, Y. Suematsu 3, M. Kubo 1, K. Ichimoto.
2006/4/17Extended Solar-B mission onboard control and data handling (data recorder, downlinks, observation tables…) Toshifumi Shimizu ISAS/JAXA.
1 Lites FPP-SP Initial Reduct SOT #17 Meeting, NAOJ, April Solar-B FPP Initial Data Reduction for the FPP Spectro- Polarimeter October, 2004 Bruce.
1 Lites FPP-SP Performance SOT #17 Meeting, NAOJ, April Solar-B FPP As-Built Performance of the FPP Spectro- Polarimeter October, 2004 FPP Team Bruce.
Alfvén Waves in the Solar Corona S. Tomczyk, S. Mclntosh, S. Keil, P. Judge, T. Schad, D. Seeley, J. Edmondson Science, Vol. 317, Sep., 2007.
1Yang LiuCISM All-hand meeting CISM All-hand Meeting Yang Liu – Stanford University
Magnetic Field Measurements from Solar-B Information shown here is from Solar-B team (including Drs Ichimoto, Kosugi, Shibata, Tarbell, and Tsuneta)
Multiheight Analysis of Asymmetric Stokes Profiles in a Solar Active Region Na Deng Post-Doctoral Researcher at California State University Northridge.
990901EIS_RR_Science.1 Science Investigation Goals and Instrument Requirements Dr. George A. Doschek EIS US Principal Investigator Naval Research Laboratory.
Instrumental & Technical Requirements. Science objectives for helioseismology Understanding the interaction of the p-mode oscillations and the solar magnetic.
Science Specification of SOLAR-C payload SOLAR-C Working Group 2012 July 23.
Statistical properties of current helicity and twist distribution in the solar cycle by high resolution data from SOT/SP on board Hinode K. Otsuji 1),
UNNOFIT inversion V. Bommier, J. Rayrole, M. Martínez González, G. Molodij Paris-Meudon Observatory (France) THEMIS Atelier "Inversion et transfert multidimensionnel",
Seething Horizontal Magnetic Fields in the Quiet Solar Photosphere J. Harvey, D. Branston, C. Henney, C. Keller, SOLIS and GONG Teams.
Solar-B/EIS high-cadence observation for diagnostics of the corona and TR S. Kamio (Kyoto Univ.) Solar-B domestic meeting.
P. Gömöry, J. Ambróz, J. Koza, M. Kozák, A. Kučera, J. Rybák, P. Schwartz S. Tomczyk, S. Sewell, P. Aumiller, R. Summers, L. Sutherland, A. Watt Astronomical.
Apr 17-22, NAOJ Dopplergram from Filtergram (FG) Observation Y. Katsukawa (NAOJ) SOT Team.
M. Collados Instituto de Astrofísica de Canarias CASSDA School Apr Tenerife M. Collados Instituto de Astrofísica de Canarias CASSDA School.
Apr 17-22, NAOJ SOT Initial Operation in Commissioning Phase Y. Katsukawa (NAOJ) SOT team.
Apr 17-22, Tunable filter wavelength scan and calibration of intensity ripple Y. Katsukawa (NAOJ) and SOT team.
Open a New Window of Plasma Diagnostics in the Solar Physics with Spectropolarimetric Observation HINODE June 10 th, 2014 Tetsu Anan (Kyoto.
2005/11/086th Solar-B Science Supersonic downflows in the photosphere discovered in sunspot moat regions T. Shimizu (ISAS/JAXA, Japan),
Introduction to SOT data analysis K.Ichimoto with help of T.Berger, Y.Katsukawa, T.Yokoyama, T.Shimizu, M.Shimojo Hinode workshop, , Beijing.
MWO MAGNETOGRAMS L. Bertello, R.K. Ulrich, J. Boyden and T. Tran Magnetogram Workshop, UCLA, April 2-4, 2007.
SCIENCE & MISSION SYSTEMS 9 December 2008Dr. Jonathan Cirtain Hinode Deputy Project Scientist Hinode AR and Flare Observations Solar Cycle 24 Hinode Science.
Solar Atmosphere A review based on paper: E. Avrett, et al. “Modeling the Chromosphere of a Sunspot and the Quiet Sun” and some others [Alexey V. Byalko]
Spicule observed in He Å Solar seminar in 2009 April 20 Short : Tetsu Anan HAZEL Bueno et al Nuño et al , 2, 3,
1 On-orbit SOT performance Kiyoshi Ichimoto and SOT-team Hinode workshop, , Beijing.
1 SOT instrument overview Kiyoshi Ichimoto NAOJ Hinode workshop, , Beijing.
Polarization Calibration of the Daniel K Inouye Solar Telescope (DKIST) formerly Advanced Technology Solar Telescope David Elmore Instrument Scientist.
SOT Preliminary Science Plan Tom Berger LMSAL SOT 17 Meeting NOAJ April 17-20, 2006.
1 Magnetogram from the Filtergraph (FG) observation K.Ichimoto, M.Kubo, Y.Katsukawa and SOT Team SOT#
Feb 4, 20034th Solar-B Science Meeting1 SOT Scientific Observations & Operations T. Shimizu (National Astronomical Observatory of Japan)
Nonlinear force-free coronal magnetic field extrapolation scheme for solar active regions Han He, Huaning Wang, Yihua Yan National Astronomical Observatories,
Calibration of the Polarization Property of SOT K.Ichimoto, Y.Suematsu, T.Shimizu, Y.Katsukawa, M.Noguchi, M.Nakagiri, M.Miyashita, S.Tsuneta (National.
1 SOT Polarization Calibration -- method and results for FG -- K.Ichimoto and SOT Team SOT#
Opportunities for Joint SOT – Ground Based Observations Using NSO/Tucson Facilities J. Harvey, NSO.
1. Twist propagation in Hα surges Patricia Jibben and Richard C. Canfield 2004, ApJ, 610, Observation of the Molecular Zeeman Effect in the G Band.
Examples of SOT Observation in Performance Verification Phase M. Kubo (JAXA/ISAS) and SOT team.
High resolution images obtained with Solar Optical Telescope on Hinode
Measurements of Vector Magnetic Fields
COSMO Large Coronagraph Preliminary Design Review
1 Scientific Data from Solar-B Solar Optical Telescope (SOT) T.Shimizu (NAOJ) Solar-B MO&DA Working Group
Spectral Line Performance Using Inversion Codes J. Graham, A. Norton, S. Tomczyk, A. Lopez Ariste, H. Socas-Navarro, B. Lites NCAR/HAO Goal: Characterize.
SHINE 2008 Vector Magnetic Fields from the Helioseismic and Magnetic Imager Steven Tomczyk (HAO/NCAR) Juan Borrero (HAO/NCAR and MPS)
2006/4/17-20 Extended 17 th SOT meeting M. Kubo (JAXA/ISAS), K. Ichimito, Y. Katsukawa (NAOJ), and SOT-team Comparison of FG and SP data from Sun test.
IAS Hinode Data WorkshopThursday 15-November-2007 The Hinode Solar Optical Telescope Data & Calibration Dr. Thomas Berger Lockheed Martin Advanced Technology.
Champ magnétique dans la photosphère et la Couronne solaires: I - observations Véronique Bommier LERMA Paris-Meudon Observatory THEMIS SEMHD-ENS, 24 avril.
SOLIS-VSM Magnetic Synoptic Maps
Focal Plane Instrumentation at Big Bear Solar Observatory
Studies on Twisted Magnetic Flux Bundles
S. Osipov, R. Kostik, N. Shchukina
Structure and Flow Field of Sunspot
Diagnostic of Chromospheric Flare Plasma
Efficient tracking of photospheric flows
A new technique of detection and inversion
Examinations of the relative alignment of the instruments on SOT
T. J. Okamoto (NAOJ/Kyoto Univ.)
Solar magnetic elements at 0
Soothing Massage of HMI Magnetic Field Data
106.13: A Makeover for HMI Magnetic Field Data
Presentation transcript:

Diagnostic capability of FG/SP Kiyoshi Ichimoto NAOJ Hinode workshop, , Beijing

Contents: - Spectral windows of SOT - Available spectral lines and their Zeeman properties - Detection limit for the magnetic field w/ polarization sensitivity of SOT - Retrievability of magnetic field from NFI observables

SOT broadband filters Field of view218" × 109" (full FOV) CCD4k × 2k pixel (full FOV), shared with the NFI Spatial Sampling arcsec/pixel (full resolution) Spectral coverage Center (nm)Width (nm)Line of interestPurpose CN IMagnetic network imaging Ca II HChromospheric heating CH IMagnetic elements Blue continuumTemperature Green continuumTemperature Red continuumTemperature Exposure time sec (typical)

BFI

Contribution function of BFI continuum log(  5000 )

Response function of BFI intensity from  T/T courtesy Dr. Mats Carlsson

CH3883, CN4305 (G-band) formation height S. V. Berdyugina etal., 2003, A&A 412, 513–527 Quiet region sunspot

SOT narrowband filter Field of view328"×164" (unvignetted 264"×164") CCD4k×2k pixel (full FOV), shared with BFI Spatial sampling0.08 arcsec/pixel (full resolution) Spectral resolution0.009nm (90mÅ) at 630nm Spectral windows (nm) and lines of interest Center -range Linesg eff Purpose Mg I b Dopplergrams and magnetograms Fe I Photospheric magnetograms Fe I Fe I Fe I Photospheric Dopplergrams Na I D Very weak fields (scattering polarization) Chromospheric fields Fe I Photospheric magnetograms Fe I Ti I Umbral magnetograms H I ~1.3?Chromosphreic structure Exposure time sec (typical)

NFI (Mg b2)

NFI

NFI

NFI Na D1 D1D2

NFI

NFI H 

MG P1 - 3S WI b2 NA S P MS 564.0* H S 0.5 2P WI FE P1 - 5D CW 83.0 FE D0 - 7D CW 62.0 Zeeman patterns of NFI lines

10” 100”1000” FOV Time res. 1” 0.1” Spatial res. 1sec 1min Time span 1hr 1day 1week 10sec 1 # of wavelength (reliability) Random noise (detection limit) 1min 1hr 1day 10min % 0.1% 1% 0.2” 0.4” SOT/NFI full image Ground SP Ground FG magnetograph SOT/SP full scan SOT performance Resolution for energy element ~  (  x) 2

SOT セミナー@花山 dx=0.2 ” (SOT) dx=1 ” (ground)  n = 0.5%  n = 0.1% Detection limit  B l (G)  B t (G)  j (A) 1.2 x x x 10 9  (erg, l=10 4 km ) 1.3 x x x Accuracy  B t (G, B t =500G)  (deg., ” )  j (A, ” ) 1.6 x x x 10 8  erg) 2.4 x (N=1000) 4.8 x (N=1000) 1.5 x (N=500) Detection limit and accuracy of magnetic field measurements -- rough comparison with ground-based observations -- Photon noise limited, FeI6302A line

S ’ = XS X : polarimeter response matrix Ground calibration X r -1 S ’  S ” on-board demodulatio n S Incident Stokes vector I ’ modulated intensity S T Incident to polarimeter Telescop e S T = TS S ” reduced Stokes vector I ” CCD output S ’ SOT product CCD gain/dark I’’ =  I’+  Polarization modulation Measuremen t error:  S I ’ = W S T dark/gain correction S raw SOT raw data Polarimeter response matrix X : true matrix X r : matrix used in calibration polarimeter response matrix

Sheet polarizer window (I,Q,U,V) mask FPP Heliostat SOT polarization calibration before launch Using well-calibrated sheet polarizers (linear & circular), the polarimeter response matrices, X, of SP and all wavelength of NFI were determined with an accuracy below. Accuracy:   X < SOT is cross-talk free at  ~ level Diagonal elements tell about the sensitivity of the SOT to Q,U,V

Left Right Median Mueller matrix x matrices at scan center; CCD image each element is scaled to median + tolerance, x 00 (=1) is replaced by I-image The x matrix can be regarded as constant in the CCD. SP

X matrix over the CCD, x1024 Example of FG/NFI left: theta= deg right: theta= deg

1) Detection limit for circular and linear polarizations  is the photometric accuracy x 33 and x 11 are diagonal elements of X 2) Polarization signals by Zeeman effect in a weak field 3) Thus detection limit for magnetic fields are given by Line profile convoluted with the tunable filter profile Detection limit of NFI for weak fields Difference of 2 nd moments of  and  -components

Q U V SOT modulation profiles from the measured PMU retardance Wavelength (nm) Retardation (wave)

Wavelength (nm)g eff G Pol. Sensitivity (diagonal element of X) Detection limit for B (Gauss) VQUBlBl BtBt MgI FeI FeI NaI FeI HI >5000 Detection limit of FG for the weak magnetic fields,  = 0.001

Line (A) UsageDetec. limit B  = 0.1% (G) BlBl BtBt 5172Active region lower chrom. Vector mag.fields Shutterless mode is preferable Vector mag.field in photosphere Highest sensitivity to linear pol. with higher spatial resolution Photospheric Dopplergram Longitudinal meg.field in lower chromosphere Prominence core imaging Vector mag.field in photosphere Umbral mag.field with TiI line Chromosphere/prominence imaging and Dopplergram No sensitivity to linear pol. 78>5000 Choice of a NFI line

NFI observables -- I( i ), Q( i ), U( i ), V( i ), i = 1,,, N Physical quantities derived from the observables --B field strength (G),  inclination (deg.),  azimuth (deg), S Doppler shift (mA) fill factor =1 Other quantities responsible for line formation are assumed to be those in typical quiet sun. An algorithm to derive the magnetic field from the NFI observables is tested. The algorithm is based on the least square using model Stokes profiles calculated beforehand How well can we retrieve the magnetic field from the products (IQUV) of the NFI?

データ解析ワークショップ Q peak (  =90 ゜) Polarization degree Peak wavelength I,Q,V Zeeman profiles against B V peak (  =0 ゜) I Q V

The method to derive the magnetic field vector from the NFI observables depends on the number of observed wavelength points. N = 1: 1-dimensional LUT for V/I  B l, Q/I  B t individually N = 2: Rotate the frame to make U=0 (ignore MO effect) + search for the best fitting to model observable in (B, , S) space N > 3: Initial guess with cos-fit algorithm + rotate the frame to make U~0 + search for the best fitting to model observable in (B, , S) sub space To test the performance of the algorithm, numerical simulations are made using ‘artificial sample observables’ (1000 sets) calculated with an atmospheric model with random physical parameters in a range of 0 < B < 3000 G 0 <  < 180 deg. -90 <  < +90 deg. -90 < S < +90 mA

No Doppler info. N = 1 at dl = -80mA, Simulation result Sample observable, 1000points B < 2000GB >2000G |S| < 60mAblackblue |S| > 60mAgreenred

alternative method: - ignoring MO effect - search entire (S, B,  ) space B < 2000GB >2000G |S| < 60mAblackblue |S| > 60mAgreenred N = 2 at d = [-80, 80] mA, simulation result

N = 4 at d = [-110, -70, 70,110] mA, simulation result B < 2000GB >2000G |S| < 60mAblackblue |S| > 60mAgreenred Non-uniform wavelength sampling

Diagnostics using SP data Zeeman effect produces polarization in spectral lines Obtain magnetic field vectors and motions in solar atmosphere. slit

Stokes profiles fitting program - Milen-Eddington fitting for Hinode SP  Data analysis session.. - SIR fitting programs SP data contains much more information on the structures of the solar atmosphere..