October 10, 2003BLTS Kickoff Meeting1 Transfer with Strong Decoding Learning Module Transfer Rules {PP,4894} ;;Score:0.0470 PP::PP [NP POSTP] -> [PREP.

Slides:



Advertisements
Similar presentations
Rule Learning – Overview Goal: learn transfer rules for a language pair where one language is resource-rich, the other is resource-poor Learning proceeds.
Advertisements

Resource Acquisition for Syntax-based MT from Parsed Parallel data Alon Lavie, Alok Parlikar and Vamshi Ambati Language Technologies Institute Carnegie.
Enabling MT for Languages with Limited Resources Alon Lavie Language Technologies Institute Carnegie Mellon University.
Automatic Rule Learning for Resource-Limited Machine Translation Alon Lavie, Katharina Probst, Erik Peterson, Jaime Carbonell, Lori Levin, Ralf Brown Language.
Course Summary LING 575 Fei Xia 03/06/07. Outline Introduction to MT: 1 Major approaches –SMT: 3 –Transfer-based MT: 2 –Hybrid systems: 2 Other topics.
Semi-Automatic Learning of Transfer Rules for Machine Translation of Low-Density Languages Katharina Probst April 5, 2002.
Does Syntactic Knowledge help English- Hindi SMT ? Avinesh. PVS. K. Taraka Rama, Karthik Gali.
Czech-to-English Translation: MT Marathon 2009 Session Preview Jonathan Clark Greg Hanneman Language Technologies Institute Carnegie Mellon University.
MT for Languages with Limited Resources Machine Translation April 20, 2011 Based on Joint Work with: Lori Levin, Jaime Carbonell, Stephan Vogel,
Building NLP Systems for Two Resource Scarce Indigenous Languages: Mapudungun and Quechua, and some other languages Christian Monson, Ariadna Font Llitjós,
Lecture 12: 22/6/1435 Natural language processing Lecturer/ Kawther Abas 363CS – Artificial Intelligence.
Machine Translation Overview Alon Lavie Language Technologies Institute Carnegie Mellon University LTI Open House March 24, 2006.
Transfer-based MT with Strong Decoding for a Miserly Data Scenario Alon Lavie Language Technologies Institute Carnegie Mellon University Joint work with:
Coping with Surprise: Multiple CMU MT Approaches Alon Lavie Lori Levin, Jaime Carbonell, Alex Waibel, Stephan Vogel, Ralf Brown, Robert Frederking Language.
Statistical XFER: Hybrid Statistical Rule-based Machine Translation Alon Lavie Language Technologies Institute Carnegie Mellon University Joint work with:
Recent Major MT Developments at CMU Briefing for Joe Olive February 5, 2008 Alon Lavie and Stephan Vogel Language Technologies Institute Carnegie Mellon.
Dependency Tree-to-Dependency Tree Machine Translation November 4, 2011 Presented by: Jeffrey Flanigan (CMU) Lori Levin, Jaime Carbonell In collaboration.
Reordering Model Using Syntactic Information of a Source Tree for Statistical Machine Translation Kei Hashimoto, Hirohumi Yamamoto, Hideo Okuma, Eiichiro.
Approaches to Machine Translation CSC 5930 Machine Translation Fall 2012 Dr. Tom Way.
Rapid Prototyping of a Transfer-based Hebrew-to-English Machine Translation System Alon Lavie Language Technologies Institute Carnegie Mellon University.
Rule Learning - Overview Goal: Syntactic Transfer Rules 1) Flat Seed Generation: produce rules from word- aligned sentence pairs, abstracted only to POS.
Machine Translation: An Introduction and Overview Alon Lavie Language Technologies Institute Carnegie Mellon University JHU Summer School June 28, 2006.
Hindi SLE Debriefing AVENUE Transfer System July 3, 2003.
AMTEXT: Extraction-based MT for Arabic Faculty: Alon Lavie, Jaime Carbonell Students and Staff: Laura Kieras, Peter Jansen Informant: Loubna El Abadi.
11 Chapter 14 Part 1 Statistical Parsing Based on slides by Ray Mooney.
Transfer-based MT with Strong Decoding for a Miserly Data Scenario Alon Lavie Language Technologies Institute Carnegie Mellon University Joint work with:
MEMT: Multi-Engine Machine Translation Faculty: Alon Lavie, Robert Frederking, Ralf Brown, Jaime Carbonell Students: Shyamsundar Jayaraman, Satanjeev Banerjee.
For Wednesday Read chapter 23 Homework: –Chapter 22, exercises 1,4, 7, and 14.
What’s in a translation rule? Paper by Galley, Hopkins, Knight & Marcu Presentation By: Behrang Mohit.
Hebrew-to-English XFER MT Project - Update Alon Lavie June 2, 2004.
Nov 17, 2005Learning-based MT1 Learning-based MT Approaches for Languages with Limited Resources Alon Lavie Language Technologies Institute Carnegie Mellon.
An Overview of the AVENUE Project Presented by Lori Levin Language Technologies Institute School of Computer Science Carnegie Mellon University Pittsburgh,
A Trainable Transfer-based MT Approach for Languages with Limited Resources Alon Lavie Language Technologies Institute Carnegie Mellon University Joint.
Machine Translation Overview Alon Lavie Language Technologies Institute Carnegie Mellon University Open House March 18, 2005.
CPSC 422, Lecture 27Slide 1 Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 27 Nov, 16, 2015.
Coping with Surprise: Multiple CMU MT Approaches Alon Lavie Lori Levin, Jaime Carbonell, Alex Waibel, Stephan Vogel, Ralf Brown, Robert Frederking Language.
MEMT: Multi-Engine Machine Translation Faculty: Alon Lavie, Jaime Carbonell Students and Staff: Gregory Hanneman, Justin Merrill (Shyamsundar Jayaraman,
A Trainable Transfer-based MT Approach for Languages with Limited Resources Alon Lavie Language Technologies Institute Carnegie Mellon University Joint.
The CMU Mill-RADD Project: Recent Activities and Results Alon Lavie Language Technologies Institute Carnegie Mellon University.
Error Analysis of Two Types of Grammar for the purpose of Automatic Rule Refinement Ariadna Font Llitjós, Katharina Probst, Jaime Carbonell Language Technologies.
Approaching a New Language in Machine Translation Anna Sågvall Hein, Per Weijnitz.
Improving a Statistical MT System with Automatically Learned Rewrite Rules Fei Xia and Michael McCord IBM T. J. Watson Research Center Yorktown Heights,
Machine Translation Overview Alon Lavie Language Technologies Institute Carnegie Mellon University August 25, 2004.
Bridging the Gap: Machine Translation for Lesser Resourced Languages
Avenue Architecture Learning Module Learned Transfer Rules Lexical Resources Run Time Transfer System Decoder Translation Correction Tool Word- Aligned.
CMU Statistical-XFER System Hybrid “rule-based”/statistical system Scaled up version of our XFER approach developed for low-resource languages Large-coverage.
Eliciting a corpus of word- aligned phrases for MT Lori Levin, Alon Lavie, Erik Peterson Language Technologies Institute Carnegie Mellon University.
Seed Generation and Seeded Version Space Learning Version 0.02 Katharina Probst Feb 28,2002.
CMU MilliRADD Small-MT Report TIDES PI Meeting 2002 The CMU MilliRADD Team: Jaime Carbonell, Lori Levin, Ralf Brown, Stephan Vogel, Alon Lavie, Kathrin.
AVENUE: Machine Translation for Resource-Poor Languages NSF ITR
Developing affordable technologies for resource-poor languages Ariadna Font Llitjós Language Technologies Institute Carnegie Mellon University September.
Nov 17, 2005Learning-based MT1 Learning-based MT Approaches for Languages with Limited Resources Alon Lavie Language Technologies Institute Carnegie Mellon.
A Simple English-to-Punjabi Translation System By : Shailendra Singh.
MEMT: Multi-Engine Machine Translation Faculty: Alon Lavie, Robert Frederking, Ralf Brown, Jaime Carbonell Students: Shyamsundar Jayaraman, Satanjeev Banerjee.
Semi-Automatic Learning of Transfer Rules for Machine Translation of Minority Languages Katharina Probst Language Technologies Institute Carnegie Mellon.
Enabling MT for Languages with Limited Resources Alon Lavie and Lori Levin Language Technologies Institute Carnegie Mellon University.
LingWear Language Technology for the Information Warrior Alex Waibel, Lori Levin Alon Lavie, Robert Frederking Carnegie Mellon University.
The AVENUE Project: Automatic Rule Learning for Resource-Limited Machine Translation Faculty: Alon Lavie, Jaime Carbonell, Lori Levin, Ralf Brown Students:
Approaches to Machine Translation
Faculty: Alon Lavie, Jaime Carbonell, Lori Levin, Ralf Brown Students:
Lecture – VIII Monojit Choudhury RS, CSE, IIT Kharagpur
Basic Parsing with Context Free Grammars Chapter 13
Urdu-to-English Stat-XFER system for NIST MT Eval 2008
Alon Lavie, Jaime Carbonell, Lori Levin,
Machine Translation Overview
Vamshi Ambati 14 Sept 2007 Student Research Symposium
Approaches to Machine Translation
AMTEXT: Extraction-based MT for Arabic
Artificial Intelligence 2004 Speech & Natural Language Processing
Presentation transcript:

October 10, 2003BLTS Kickoff Meeting1 Transfer with Strong Decoding Learning Module Transfer Rules {PP,4894} ;;Score: PP::PP [NP POSTP] -> [PREP NP] ((X2::Y1) (X1::Y2)) Translation Lexicon Run Time Transfer System Lattice Decoder English Language Model Word-to-Word Translation Probabilities Word-aligned elicited data

October 10, 2003BLTS Kickoff Meeting2 Transfer Rule Formalism Type information Part-of-speech/constituent information Alignments x-side constraints y-side constraints xy-constraints, e.g. ((Y1 AGR) = (X1 AGR)) ; SL: the man, TL: der Mann NP::NP [DET N] -> [DET N] ( (X1::Y1) (X2::Y2) ((X1 AGR) = *3-SING) ((X1 DEF = *DEF) ((X2 AGR) = *3-SING) ((X2 COUNT) = +) ((Y1 AGR) = *3-SING) ((Y1 DEF) = *DEF) ((Y2 AGR) = *3-SING) ((Y2 GENDER) = (Y1 GENDER)) )

October 10, 2003BLTS Kickoff Meeting3 Rule Learning - Overview Goal: Acquire Syntactic Transfer Rules Use available knowledge from the source side (grammatical structure) Three steps: 1.Flat Seed Generation: first guesses at transfer rules; flat syntactic structure 2.Compositionality: use previously learned rules to add hierarchical structure 3.Seeded Version Space Learning: refine rules by learning appropriate feature constraints

October 10, 2003BLTS Kickoff Meeting4 Flat Seed Rule Generation Learning Example: NP Eng: the big apple Heb: ha-tapuax ha-gadol Generated Seed Rule: NP::NP [ART ADJ N]  [ART N ART ADJ] ((X1::Y1) (X1::Y3) (X2::Y4) (X3::Y2))

October 10, 2003BLTS Kickoff Meeting5 Compositionality Initial Flat Rules: S::S [ART ADJ N V ART N]  [ART N ART ADJ V P ART N] ((X1::Y1) (X1::Y3) (X2::Y4) (X3::Y2) (X4::Y5) (X5::Y7) (X6::Y8)) NP::NP [ART ADJ N]  [ART N ART ADJ] ((X1::Y1) (X1::Y3) (X2::Y4) (X3::Y2)) NP::NP [ART N]  [ART N] ((X1::Y1) (X2::Y2)) Generated Compositional Rule: S::S [NP V NP]  [NP V P NP] ((X1::Y1) (X2::Y2) (X3::Y4))

October 10, 2003BLTS Kickoff Meeting6 Version Space Learning Input: Rules and their Example Sets S::S [NP V NP]  [NP V P NP] {ex1,ex12,ex17,ex26} ((X1::Y1) (X2::Y2) (X3::Y4)) NP::NP [ART ADJ N]  [ART N ART ADJ] {ex2,ex3,ex13} ((X1::Y1) (X1::Y3) (X2::Y4) (X3::Y2)) NP::NP [ART N]  [ART N] {ex4,ex5,ex6,ex8,ex10,ex11} ((X1::Y1) (X2::Y2)) Output: Rules with Feature Constraints: S::S [NP V NP]  [NP V P NP] ((X1::Y1) (X2::Y2) (X3::Y4) (X1 NUM = X2 NUM) (Y1 NUM = Y2 NUM) (X1 NUM = Y1 NUM))

October 10, 2003BLTS Kickoff Meeting7 Examples of Learned Rules {NP,14244} ;;Score: NP::NP [N] -> [DET N] ( (X1::Y2) ) {NP,14434} ;;Score: NP::NP [ADJ CONJ ADJ N] -> [ADJ CONJ ADJ N] ( (X1::Y1) (X2::Y2) (X3::Y3) (X4::Y4) ) {PP,4894} ;;Score: PP::PP [NP POSTP] -> [PREP NP] ( (X2::Y1) (X1::Y2) )

October 10, 2003BLTS Kickoff Meeting8 Manual Transfer Rules: Example ;; PASSIVE OF SIMPLE PAST (NO AUX) WITH LIGHT VERB ;; passive of 43 (7b) {VP,28} VP::VP : [V V V] -> [Aux V] ( (X1::Y2) ((x1 form) = root) ((x2 type) =c light) ((x2 form) = part) ((x2 aspect) = perf) ((x3 lexwx) = 'jAnA') ((x3 form) = part) ((x3 aspect) = perf) (x0 = x1) ((y1 lex) = be) ((y1 tense) = past) ((y1 agr num) = (x3 agr num)) ((y1 agr pers) = (x3 agr pers)) ((y2 form) = part) )

October 10, 2003BLTS Kickoff Meeting9 Manual Transfer Rules: Example ; NP1 ke NP2 -> NP2 of NP1 ; Ex: jIvana ke eka aXyAya ; life of (one) chapter ; ==> a chapter of life ; {NP,12} NP::NP : [PP NP1] -> [NP1 PP] ( (X1::Y2) (X2::Y1) ; ((x2 lexwx) = 'kA') ) {NP,13} NP::NP : [NP1] -> [NP1] ( (X1::Y1) ) {PP,12} PP::PP : [NP Postp] -> [Prep NP] ( (X1::Y2) (X2::Y1) ) NP PP NP1 NP P Adj N N1 ke eka aXyAya N jIvana NP NP1 PP Adj N P NP one chapter of N1 N life

October 10, 2003BLTS Kickoff Meeting10 Future Directions Continued work on automatic rule learning (especially Seeded Version Space Learning) Improved leveraging from manual grammar resources, interaction with bilingual speakers Developing a well-founded model for assigning scores (probabilities) to transfer rules Improving the strong decoder to better fit the specific characteristics of the XFER model MEMT with improved –Combination of output from different translation engines with different scorings – strong decoding capabilities

October 10, 2003BLTS Kickoff Meeting11 A Limited Data Scenario for Hindi-to-English Put together a scenario with “miserly” data resources: –Elicited Data corpus: phrases –Cleaned portion (top 12%) of LDC dictionary: ~2725 Hindi words (23612 translation pairs) –Manually acquired resources during the SLE: 500 manual bigram translations 72 manually written phrase transfer rules 105 manually written postposition rules 48 manually written time expression rules No additional parallel text!!

October 10, 2003BLTS Kickoff Meeting12 Testing Conditions Tested on section of JHU provided data: 258 sentences with four reference translations –SMT system (stand-alone) –EBMT system (stand-alone) –XFER system (naïve decoding) –XFER system with “strong” decoder No grammar rules (baseline) Manually developed grammar rules Automatically learned grammar rules –XFER+SMT with strong decoder (MEMT)

October 10, 2003BLTS Kickoff Meeting13 Results on JHU Test Set (very miserly training data) SystemBLEUM-BLEUNIST EBMT SMT XFER (naïve) man grammar XFER (strong) no grammar XFER (strong) learned grammar XFER (strong) man grammar XFER+SMT

October 10, 2003BLTS Kickoff Meeting14 Effect of Reordering in the Decoder

October 10, 2003BLTS Kickoff Meeting15 Observations and Lessons (I) XFER with strong decoder outperformed SMT even without any grammar rules in the miserly data scenario –SMT Trained on elicited phrases that are very short –SMT has insufficient data to train more discriminative translation probabilities –XFER takes advantage of Morphology Token coverage without morphology: Token coverage with morphology: Manual grammar currently somewhat better than automatically learned grammar –Learned rules did not yet use version-space learning –Large room for improvement on learning rules –Importance of effective well-founded scoring of learned rules

October 10, 2003BLTS Kickoff Meeting16 Observations and Lessons (II) MEMT (XFER and SMT) based on strong decoder produced best results in the miserly scenario. Reordering within the decoder provided very significant score improvements –Much room for more sophisticated grammar rules –Strong decoder can carry some of the reordering “burden”

October 10, 2003BLTS Kickoff Meeting17 Conclusions Transfer rules (both manual and learned) offer significant contributions that can complement existing data-driven approaches –Also in medium and large data settings? Initial steps to development of a statistically grounded transfer-based MT system with: –Rules that are scored based on a well-founded probability model –Strong and effective decoding that incorporates the most advanced techniques used in SMT decoding Working from the “opposite” end of research on incorporating models of syntax into “standard” SMT systems [Knight et al] Our direction makes sense in the limited data scenario

October 10, 2003BLTS Kickoff Meeting18 The Transfer Engine Analysis Source text is parsed into its grammatical structure. Determines transfer application ordering. Example: 他 看 书。 (he read book) S NP VP N V NP 他 看 书 Transfer A target language tree is created by reordering, insertion, and deletion. S NP VP N V NP he read DET N a book Article “a” is inserted into object NP. Source words translated with transfer lexicon. Generation Target language constraints are checked and final translation produced. E.g. “reads” is chosen over “read” to agree with “he”. Final translation: “He reads a book”