Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 15.2 Flaws of Voting.

Slides:



Advertisements
Similar presentations
Which units are you most interested in covering? Unit A –Management Science Unit B – Growth Unit C – Shape and Form Unit D – Statistics.
Advertisements

Excursions in Modern Mathematics, 7e: Copyright © 2010 Pearson Education, Inc. 1 The Mathematics of Voting 1.1Preference Ballots and Preference.
Voting Methods Continued
Math 1010 ‘Mathematical Thought and Practice’ An active learning approach to a liberal arts mathematics course.
IMPOSSIBILITY AND MANIPULABILITY Section 9.3 and Chapter 10.
Chapter 1: Methods of Voting
The Mathematics of Elections
Mathematics The study of symbols, shapes, algorithms, sets, and patterns, using logical reasoning and quantitative calculation. Quantitative Reasoning:
VOTING SYSTEMS Section 2.5.
 1. The majority criterion  2. Condorcet’s criterion  3. independence of irrelevant alternatives criterion  4. Monotonicity criterion.
MA 110: Finite Math Dr. Maria Byrne Instructional Laboratory 0345 Lecture 10/31/2008.
MAT 105 Spring  There are many more methods for determining the winner of an election with more than two candidates  We will only discuss a few.
Excursions in Modern Mathematics Sixth Edition
1.1, 1.2 Ballots and Plurality Method
Chapter 9: Social Choice: The Impossible Dream Lesson Plan
1 The Mathematics of Voting
Fair Elections Are they possible?. Acknowledgment Many of the examples are taken from Excursions in Modern Mathematics by Peter Tannenbaum and Robert.
Voting and Math Kelsey, Ashleigh, Alex, Nick, Justin MAT 142 Final Project.
CRITERIA FOR A FAIR ELECTION
Homework Discussion Read Pages 48 – 62 Page 72: 1 – 4, 6 TEST 1 ON THURSDAY FEBRUARY 8 –The test will cover sections 1.1 – 1.6, and 2.1 – 2.3 in the textbook.
1 The Process of Computing Election Victories Computational Sociology: Social Choice and Voting Methods CS110: Introduction to Computer Science – Lab Module.
How is this math? Mathematics is essentially the application of deductive reasoning to the study relations among patterns, structures, shapes, forms and.
Social choice (voting) Vincent Conitzer > > > >
Section 1.1, Slide 1 Copyright © 2014, 2010, 2007 Pearson Education, Inc. Section 11.2, Slide 1 11 Voting Using Mathematics to Make Choices.
Voting Geometry: A Mathematical Study of Voting Methods and Their Properties Alan T. Sherman Dept. of CSEE, UMBC March 27, 2006.
Excursions in Modern Mathematics, 7e: Copyright © 2010 Pearson Education, Inc. 1 The Mathematics of Voting The Paradoxes of Democracy Vote! In.
CPS Voting and social choice Vincent Conitzer
Slide 15-1 Copyright © 2005 Pearson Education, Inc. SEVENTH EDITION and EXPANDED SEVENTH EDITION.
Copyright © 2009 Pearson Education, Inc. Chapter 15 Section 2 - Slide Election Theory Flaws of Voting.
May 19, 2010Math 132: Foundations of Mathematics 12.5 Homework Solutions 27. (a) 28. (b) 29. (d) 30. (e) 53. Positive Correlation, Weak 54. Negative Correlation,
© 2010 Pearson Prentice Hall. All rights reserved. CHAPTER 14 Voting and Apportionment.
Chapter 15 Section 1 - Slide 1 Copyright © 2009 Pearson Education, Inc. AND.
Excursions in Modern Mathematics, 7e: Copyright © 2010 Pearson Education, Inc. 1 The Mathematics of Voting 1.1Preference Ballots and Preference.
Math for Liberal Studies.  We have seen many methods, all of them flawed in some way  Which method should we use?  Maybe we shouldn’t use any of them,
Let’s take a class vote. How many of you are registered to vote?
Section 1.1, Slide 1 Copyright © 2014, 2010, 2007 Pearson Education, Inc. Section 11.1, Slide 1 11 Voting Using Mathematics to Make Choices.
Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 15.1 Voting Methods.
Voting Tie Breakers. With each method described – plurality method, Borda count method, plurality with elimination method, and pairwise comparison method.
Copyright © 2009 Pearson Education, Inc. Chapter 15 Section 1 - Slide Election Theory Voting Methods.
Fairness Criteria and Arrow’s Theorem Section 1.4 Animation.
Arrow’s Impossibility Theorem. Question: Is there a public decision making process, voting method, or “Social Welfare Function” (SWF) that will tell us.
Warm-Up Rank the following soft drinks according to your preference (1 being the soft drink you like best and 4 being the one you like least)  Dr. Pepper.
The Mathematics of Voting Chapter 1. Preference Ballot A Ballot in which the voters are asked to rank the candidates in order of preference. 1. Brownies.
© 2010 Pearson Prentice Hall. All rights reserved Flaws of Voting Methods.
14.2 Homework Solutions Plurality: Musical play Borda count: Classical play Plurality-with-elimination: Classical play Pairwise Comparison: Classical play.
The mathematics of voting The paradoxes of democracy.
Excursions in Modern Mathematics, 7e: Copyright © 2010 Pearson Education, Inc. 1 The Mathematics of Voting 1.1Preference Ballots and Preference.
Chapter 9: Social Choice: The Impossible Dream Lesson Plan Voting and Social Choice Majority Rule and Condorcet’s Method Other Voting Systems for Three.
Excursions in Modern Mathematics, 7e: 1.Conclusion - 2Copyright © 2010 Pearson Education, Inc. 1 The Mathematics of Voting CONCLUSION Elections, Fairness,
Fairness Criteria Fairness Criteria: properties we expect a good voting system to satisfy.Fairness Criteria: properties we expect a good voting system.
Voting System Review Borda – Sequential Run-Off – Run-Off –
My guy lost? What’s up with that….  In the 1950’s, Kenneth Arrow, a mathematical economist, proved that a method for determining election results that.
1 The Process of Computing Election Victories Computational Sociology: Social Choice and Voting Methods CS110: Introduction to Computer Science – Lab Module.
Impossibility and Other Alternative Voting Methods
1.
8.2 Voting Possibilities and Fairness Criteria
Impossibility and Other Alternative Voting Methods
1.3 The Borda Count Method.
Warm Up – 5/27 - Monday How many people voted in the election?
Warm Up – 1/23 - Thursday How many people voted in the election?
Social Choice Theory [Election Theory]
Classwork: p.33 (27abc run off, 29ab run off, 31, 33ab run off)
Section 15.2 Flaws of Voting
5-2 Election Theory Flaws of Voting.
Voting systems Chi-Kwong Li.
Warm Up – 1/27 - Monday Who wins by Plurality with Elimination?
Quiz – 1/24 - Friday How many people voted in the election?
Section 14.1 Voting Methods.
Flaws of the Voting Methods
Voting Fairness.
Presentation transcript:

Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 15.2 Flaws of Voting

Copyright 2013, 2010, 2007, Pearson, Education, Inc. What You Will Learn Fairness Criteria Majority Criterion Head-to-Head Criterion Monotonicity Criterion Irrelevant Alternative Criterion

Copyright 2013, 2010, 2007, Pearson, Education, Inc. Fairness Criteria Mathematicians and political scientists have agreed that a voting method should meet the following four criteria in order for the voting method to be considered fair. Majority Criterion Head-to-head Criterion Monotonicity Criterion Irrelevant Alternatives Criterion

Copyright 2013, 2010, 2007, Pearson, Education, Inc. Majority Criterion If a candidate receives a majority (more than 50%) of the first-place votes, that candidate should be declared the winner

Copyright 2013, 2010, 2007, Pearson, Education, Inc. Head-to-Head Criterion If a candidate is favored when compared head-to-head with every other candidate, that candidate should be declared the winner

Copyright 2013, 2010, 2007, Pearson, Education, Inc. Monotonicity Criterion A candidate who wins a first election and then gains additional support without losing any of the original support should also win a second election

Copyright 2013, 2010, 2007, Pearson, Education, Inc. Irrelevant Alternatives Criterion If a candidate is declared the winner of an election and in a second election one or more of the other candidates is removed, the previous winner should still be declared the winner

Copyright 2013, 2010, 2007, Pearson, Education, Inc. Summary of the Voting Methods and Whether They Satisfy the Fairness Criteria May not satisfy Irrelevant alternatives May not satisfy Always satisfies Monotonicity Always satisfies May not satisfy Head-to- head Always satisfies May not satisfy Always satisfies Majority Pairwise comparison Plurality with elimination Borda count PluralityMethod Criteria

Copyright 2013, 2010, 2007, Pearson, Education, Inc. Arrow’s Impossibility Theorem It is mathematically impossible for any democratic voting method to simultaneously satisfy each of the fairness criteria: The majority criterion The head-to-head criterion The monotonicity criterion The irrevelant alternative criterion