Integrating out Holographic QCD Models to Hidden Local Symmetry Masayasu Harada (Nagoya University) Dense strange nuclei and compressed baryonic matter.

Slides:



Advertisements
Similar presentations
1 Eta production Resonances, meson couplings Humberto Garcilazo, IPN Mexico Dan-Olof Riska, Helsinki … exotic hadronic matter?
Advertisements

1 Holographic description of Hadrons from String Theory Shigeki Sugimoto (IPMU) Rencontres de Moriond, March 25, La Thuile, Italy (based on works.
Analysis of QCD via Supergravity S. Sugimoto (YITP) based on hep-th/ (T. Ibaraki + S.S.) Windows to new paradigm in particle Sendai.
Baryons with Holography Hideo SUGANUMA ( Kyoto Univ. ) Toru KOJO ( Kyoto Univ. ) Kanabu NAWA ( RCNP ) in collaboration with.
Denis Parganlija (Frankfurt U.) Meson 2010 Workshop, Kraków - Poland Structure of Scalar Mesons f 0 (600), a 0 (980), f 0 (1370) and a 0 (1450) Denis Parganlija.
Introduction & motivation Baryons in the 1/N c expansion of QCD Photoproduction of excited baryons Summary & conclusions N.N. Scoccola Department of Physics.
Precision Holographic Baryons PILJIN YI (KIAS) Baryons 2010, Osaka, December 2010 Koji Hashimoto Deog-Ki Hong Norihiro Iizuka Youngman Kim Sangmin Lee.
QCD-2004 Lesson 1 : Field Theory and Perturbative QCD I 1)Preliminaries: Basic quantities in field theory 2)Preliminaries: COLOUR 3) The QCD Lagrangian.
Exotic states at boundary of quark matter Mannque Rho Saclay (HIM, September 2006)
New Frontiers in QCD, October 28th, 2011 Based on K. Kim, D. Jido, S.H. Lee PRC 84(2011) K. Kim, Y. Kim, S. Takeuchi, T. Tsukioka PTP 126(2011)735.
Masayasu Harada (Nagoya Univ.) based on M.H., M.Rho and C.Sasaki, Phys. Rev. D 70, (2004) M.H., Work in progress at “Heavy Quark Physics in QCD”
INSTANTON AND ITS APPLICATION Nam, Seung-il Yukawa Institute for Theoretical Physics (YITP), Kyoto University, Japan YITP, Kyoto University YITP Lunch.
“Time-reversal-odd” distribution functions in chiral models with vector mesons Alessandro Drago University of Ferrara.
Isospin effect in asymmetric nuclear matter (with QHD II model) Kie sang JEONG.
HL-ch.3 Sept. 2002Student Seminar Subatomic Physics1 Seminar Subatomic Physics Chapter 3: New developments in hadronic particle production Nucleon resonances.
EXOTIC MESONS WITH HIDDEN BOTTOM NEAR THRESHOLDS D2 S. OHKODA (RCNP) IN COLLABORATION WITH Y. YAMAGUCHI (RCNP) S. YASUI (KEK) K. SUDOH (NISHOGAKUSHA) A.
Charm hadrons in nuclear medium S. Yasui (KEK) K. Sudoh (Nishogakusha Univ.) “Hadron in nucleus” 31 Nov. – 2 Dec arXiv:1308:0098 [hep-ph]
Sigma model and applications 1. The linear sigma model (& NJL model) 2. Chiral perturbation 3. Applications.
L. R. Dai (Department of Physics, Liaoning Normal University) Z.Y. Zhang, Y.W. Yu (Institute of High Energy Physics, Beijing, China) Nucleon-nucleon interaction.
Mass modification of heavy-light mesons in spin-isospin correlated matter Masayasu Harada (Nagoya Univ.) at Mini workshop on “Structure and production.
Wednesday, Apr. 23, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #24 Wednesday, Apr. 23, 2003 Dr. Jae Yu Issues with SM picture Introduction.
Holographic model for hadrons in deformed AdS 5 background K. Ghoroku (Fukuoka Tech.) N. Maru (U. Rome) M. Yahiro (Kyushu U.) M. Tachibana (Saga U.) Phys.Lett.B633(2006)606.
Chiral condensate in nuclear matter beyond linear density using chiral Ward identity S.Goda (Kyoto Univ.) D.Jido ( YITP ) 12th International Workshop on.
Recent progress on nuclear physics from Skyrme model Yong-Liang Ma Jilin University In Collaboration with: M. Harada, B. R. He H. K. Lee, Y. Oh, B. Y.
Eigo Shintani (KEK) (JLQCD Collaboration) KEKPH0712, Dec. 12, 2007.
Instanton vacuum at finite density Hyun-Chul Kim Department of Physics Inha University S.i.N. and H.-Ch.Kim, Phys. Rev. D 77, (2008) S.i.N., H.Y.Ryu,
Masayasu Harada (Nagoya Univ.) based on M.H. and C.Sasaki, Phys.Rev.D74:114006,2006 at Chiral 07 (Osaka, November 14, 2007) see also M.H. and K.Yamawaki,
II Russian-Spanish Congress “Particle and Nuclear Physics at all scales and Cosmology”, Saint Petersburg, Oct. 4, 2013 RECENT ADVANCES IN THE BOTTOM-UP.
HIM, Feb. 23, 2009 Pion properties from the instanton vacuum in free space and at finite density Hyun-Chul Kim Department of Physics, Inha University.
Masayasu Harada (Nagoya Univ.) based on M.H. and K.Yamawaki, Phys. Rept. 381, 1 (2003) M.H., T.Fujimori and C.Sasaki, in KIAS-Hanyang Joint.
Masayasu Harada (Nagoya Univ.) based on (mainly) M.H. and K.Yamawaki, Phys. Rev. Lett. 86, 757 (2001) M.H. and C.Sasaki, Phys. Lett. B 537, 280 (2002)
Introduction & motivation Baryons in the 1/N c expansion of QCD Photoproduction of excited baryons Summary & conclusions N.N. Scoccola Department of Physics.
Nucleon Polarizabilities: Theory and Experiments
NEW TRENDS IN HIGH-ENERGY PHYSICS (experiment, phenomenology, theory) Alushta, Crimea, Ukraine, September 23-29, 2013 Effects of the next-to-leading order.
R. Machleidt, University of Idaho Recent advances in the theory of nuclear forces and its relevance for the microscopic approach to dense matter.
Masayasu Harada (Nagoya 理論センター研究会 「原子核・ハドロン物 理」 (August 11, 2009) based on M.H. and C.Sasaki, arXiv: M.H., C.Sasaki and W.Weise, Phys.
Amand Faessler, Tuebingen1 Chiral Quark Dynamics of Baryons Gutsche, Holstein, Lyubovitskij, + PhD students (Nicmorus, Kuckei, Cheedket, Pumsa-ard, Khosonthongkee,
Heavy hadron phenomenology on light front Zheng-Tao Wei Nankai University 年两岸粒子物理与宇宙学 研讨会,重庆, 5.7—5.12 。
* Collaborators: A. Pich, J. Portolés (Valencia, España), P. Roig (UNAM, México) Daniel Gómez Dumm * IFLP (CONICET) – Dpto. de Física, Fac. de Ciencias.
And Mesons in Strange Hadronic Medium at Finite Temperature and Density Rahul Chhabra (Ph.D student) Department Of Physics NIT Jalandhar India In cooperation.
Exotic baryon resonances in the chiral dynamics Tetsuo Hyodo a a RCNP, Osaka b ECT* c IFIC, Valencia d Barcelona Univ. 2003, December 9th A.Hosaka a, D.
Helmholtz International Summer School, Dubna, 24 July 2008 Pion decay constant in Dense Skyrmion Matter Hee-Jung Lee ( Chungbuk Nat’l Univ.) Collaborators.
Skyrmions Revisited 2006 Mannque Rho PNU & Saclay Quarks, Nuclei and Universe Daejon 2006.
Restoration of chiral symmetry and vector meson in the generalized hidden local symmetry Munehisa Ohtani (RIKEN) Osamu Morimatsu ( KEK ) Yoshimasa Hidaka(TITech)
Toru T. Takahashi with Teiji Kunihiro ・ Why N*(1535)? ・ Lattice QCD calculation ・ Result TexPoint fonts used in EMF. Read the TexPoint manual before you.
Possible molecular bound state of two charmed baryons - hadronic molecular state of two Λ c s - Wakafumi Meguro, Yan-Rui Liu, Makoto Oka (Tokyo Institute.
Departamento de Física Teórica II. Universidad Complutense de Madrid José R. Peláez ON THE NATURE OF THE LIGHT SCALAR NONET FROM UNITARIZED CHIRAL PERTURBATION.
Beijing, QNP091 Matthias F.M. Lutz (GSI) and Madeleine Soyeur (Saclay) Irfu/SPhN CEA/ Saclay Irfu/SPhN CEA/ Saclay Dynamics of strong and radiative decays.
Convergence of chiral effective theory for nucleon magnetic moments P. Wang, D. B. Leinweber, A. W. Thomas, A. G. Williams and R. Young.
EFT for π ☆ Chiral Perturbation Theory matching to QCD ⇒ Λ ~ 1 GeV P-wave ππ scattering J. Gasser and H. Leutwyler, Annals Phys. 158, 142 (1984); NPB.
Hadron 2007 Frascati, October 12 th, 2007 P.Faccioli, M.Cristoforetti, M.C.Traini Trento University & I.N.F.N. J. W. Negele M.I.T. P.Faccioli, M.Cristoforetti,
Study of sigma meson structure in D meson decay Masayasu Harada (Nagoya Univ.) at International Workshop on New Hadon Spectroscopy (November 21, 2012,
Dense Baryonic Matter in the Hidden Local Symmetry Approach Yong-Liang Ma Department of Physics, Nagoya University. Talk APCTP-WCU Focus Program,
Topology Change and EoS for Compressed Baryonic Matter WCU-APCTP 2013.
Relating holographic QCD models to hidden local symmetry models Property of X(3872) as a hadronic molecule with negative parity Masayasu Harada “New Hadons”
Denis Parganlija (Frankfurt U.) Finite-Temperature QCD Workshop, IST Lisbon Non-Strange and Strange Scalar Quarkonia Denis Parganlija In collaboration.
Radiative Decays involving Scalar Mesons Masayasu Harada (Nagoya Univ.) based Japan-US Workshop on “Electromagnetic Meson Production and Chiral Dynamics”
M.H. and K.Yamawaki, Phys. Rev. Lett. 86, 757 (2001) M.H. and K.Yamawaki, Phys. Rev. Lett. 87, (2001)
Chiral Approach to the Phi Radiative Decays and the Quark Structure of the Scalar Meson Masayasu Harada (Nagoya Univ.) based HEP-Nuclear Physics Cross.
C.A. Dominguez Centre for Theoretical Physics & Astrophysics University of Cape Town Department of Physics, Stellenbosch University South Africa XII WORKSHOP.
Resonance saturation at next-to-leading order
Institute of High Energy physics KEK, Hadron physics at J-PARC, Japan
mesons as probes to explore the chiral symmetry in nuclear matter
Weak Interacting Holographic QCD
4. Hidden Local Symmetry Effective (Field) Theory
Nuclear Forces - Lecture 5 -
Present status of bottom up model: sample works
Hyun Kyu Lee Hanyang University
Dilaton in Baryonic Matter
Theory on Hadrons in nuclear medium
Presentation transcript:

Integrating out Holographic QCD Models to Hidden Local Symmetry Masayasu Harada (Nagoya University) Dense strange nuclei and compressed baryonic Yukawa Institute, Kyoto, Japan (April 21, 2011) MH, S.Matsuzaki and K.Yamawaki, Phys. Rev. D 74, (2006) MH, S.Matsuzaki and K.Yamawaki, Phys. Rev. D82, (2010) MH and M. Rho, arXiv:

QCD (Strong Coupling Gauge Theory) Hadron Phenomena

Q C D Low Energy hadron Phenomena Lattice QCD Effective models

☆ Holographic QCD Models Effective models of QCD ・ Large Nc limit QCD ⇒ weakly interacting theory of mesons Baryons are given as solitons. ○ infinite number of mesons ・ large λ = Nc g 2 (’t Hooft coupling) limit Correspondence in real-life QCD ? Contribution from infinite tower can be included In holographic models Example : Short distance behavior of N-N potential ∝ 1/r 2 (with infinite tower contribution summed up) Hashimoto-Sakai-Sugimoto, PTP122, 427 (2009)

☆ Predictions of hQCD models ○ momentum independent quantities e.g., mass, coupling, … It is not difficult to compare model predictions with experiments. ○ Momentum dependent quantities e.g., form factors, scattering cross sections, … It seems difficult to compare model predictions with experiments, since it is difficult to add up contributions from infinite number of mesons.

Integrating out heavy modes ☆ Proposal hQCD models HLS model Most general effective model for  and  Low Energy hadron Phenomena This may give an interpretation of hQCD results in terms of lowest lying mesons (  and  ). This may give a clue to understand what we can learn from hQCD on real life QCD ?

Outline 1.Introduction 2.Hidden Local Symmetry 3.A Method for Integrating Out 4.Form Factors in Sakai-Sugimoto Model 5.Application to Nucleon Form Factors 6.Summary

M. Bando, T. Kugo, S. Uehara, K. Yamawaki and T. Yanagida, PRL (1985) M. Bando, T. Kugo and K. Yamawaki, Phys. Rept. 164, 217 (1988) M.H. and K.Yamawaki, Phys. Rept. 381, 1 (2003)

based on chiral symmetry of QCD ρ ・・・ gauge boson of the HLS ◎ Hidden Local Symmetry Theory ・・・ EFT for  and  M. Bando, T. Kugo, S. Uehara, K. Yamawaki and T. Yanagida, PRL (1985) M. Bando, T. Kugo and K. Yamawaki, Phys. Rept. 164, 217 (1988) M.H. and K.Yamawaki, Physics Reports 381, 1 (2003

☆ Chiral Lagrangian Non-Linear Realization of Chiral Symmetry SU(N ) ×SU(N ) → SU(N ) f ff LRV ◎ Basic Quantity U = e → g U g R 2 i π T /F a a π L † ; g ∈ SU(N ) L,R f ◎ Lagrangian L = tr [ ∇ U ∇ U ] F π 2 4 μ μ† ∇ U ≡∂ U - i L U + i U R μ μ μμ L, R ; gauge fields of SU(N ) μ μfL,R

☆ Hidden Local Symmetry U = e = ξ ξ 2 i π/ F π L † R F, F ・・・ Decay constants of π and σ πσ h ∈ [ SU(N ) ] fV local g ∈ [ SU(N ) ] f L,R global ・ Particles ρ μ = ρ μ a T a ・・・ HLS gauge boson π=π a T a ・・・ NG boson of [ SU(N f ) L ×SU(N f ) R ] global symmetry breaking σ=σ a T a ・・・ NG boson of [ SU(N f ) V ] local symmetry breaking ◎ 3 parameters at the leading order F  ・・・ pion decay constant g ・・・ gauge coupling of the HLS a = (F  /F  ) 2 ⇔ validity of the  meson dominance m = a g F π ρ 22 2

Maurer-Cartan 1-forms Lagrangian

based on chiral symmetry of QCD ρ ・・・ gauge boson of the HLS ◎ Chiral Perturbation Theory with HLS H.Georgi, PRL 63, 1917 (1989); NPB 331, 311 (1990): M.H. and K.Yamawaki, PLB297, 151 (1992) M.Tanabashi, PLB 316, 534 (1993): M.H. and K.Yamawaki, Physics Reports 381, 1 (2003) Systematic low-energy expansion including dynamical  loop expansion ⇔ derivative expansion ◎ Hidden Local Symmetry Theory ・・・ EFT for  and  M. Bando, T. Kugo, S. Uehara, K. Yamawaki and T. Yanagida, PRL (1985) M. Bando, T. Kugo and K. Yamawaki, Phys. Rept. 164, 217 (1988) Leading order Lagrangian is counted as O(p 2 ), Next order terms are of O(p 4 ).

◎ Typical examplesof O(p 4 ) terms

M.H., S.Matsuzaki and K.Yamawaki, Phys. Rev. D 74, (2006) M.H., S.Matsuzaki and K.Yamawaki, Phys. Rev. D 82, (2010)

☆ hQCD models which include 5-dimensional gauge field at intermediate step In the following, I will use Sakai-Sugimoto model Kinetic term in 4-Dim.Mass term in 4-Dim 5-D gauge transformation Residual gauge symmetry = Hidden Local Symmetry Gauge fixing :

◎ Mode expansion of the gauge field Eigenvalue equation Axial-vector mesonsVector mesons SS model input ・・・ Pions as NG bosons

☆ m(  ) ~ E ≪ m(a 1 ) ・ Integrate out vector and axial-vector mesons other than  meson. Solve the equations of motions with kinetic terms neglected. HLS with a particular choice of parameters Note that z 1 ~ 8 are all determined by the model, which include effects of heavy mesons. ≠ truncation of heavy mesons

M.H., S.Matsuzaki and K.Yamawaki, Phys. Rev. D 82, (2010)

 EM form factor In Sakai-Sugimoto model infinite tower of  mesons contributes. k=1 :  meson k=2 :  ’ meson k=3 :  ” meson … = (-0.35) + (0.05) + (-0.01) + … ’’   ’’  ’’’  meson dominance ⇒ ; In the Hidden Local Symmetry  EM form factor is parameterized as ・ Reduction of Sakai-Sugimoto model ⇒

◎ Alternative way to relate hQCD to HLS k=1 :  meson k=2 :  ’ meson k=3 :  ” meson … m ~ Q2 ≪ m’m ~ Q2 ≪ m’ Sum Rules

 EM form factor  meson dominance  2 /dof = 226/53=4.3 ; SS model :  2 /dof = 147/53=2.8 best fit in the HLS :  2 /dof=81/51=1.6 Exp data : NA7], NPB277, 168 (1996) J-lab F(pi), PRL86, 1713(2001) J-lab F(pi), PRC75, (2007) J-lab F(pi)-2, PRL97, (2006) Infinite tower works well as the  meson dominance ! MH, S.Matsuzaki, K.Yamawaki, PRD82, (2010) cf : MH, K.Yamawaki, Phys.Rept 381, 1 (2003)

 transition form factor MH, S.Matsuzaki, K.Yamawaki, arXiv: cf : MH, K.Yamawaki, Phys.Rept 381, 1 (2003) best fit in the HLS  2 /dof=24/30=0.8 Sakai-Sugimoto model :  2 /dof=45/31=1.5 ・  meson dominance  2 /dof=124/31=4.0 Violation of  /  meson dominance may indicate existence of the contributions from the higher resonances.

 form factor    m  = m  is used. SS model :  2 /dof = 63/5 = 13  meson dominance  2 /dof = 4.8/5=1.0 best fit in the HLS  2 /dof=3.0/4 = 0.7

 →       decay A B A/B ≪ 1 ⇒  meson dominance is well satisfied in SS model

MH and M. Rho,. arXiv: [hep-ph]

☆ Hong-Rho-Yee-Yi hQCD Model 5-D effective model including 5-D baryon field + 5-D gauge field ⇒ 4-D effective model with baryon (nucleon) and an infinite tower of vector and axial-vector mesons Nucleon form factos PRD76, (2007) JHEP 0709, 063 (2007)

Example 3: Proton EM form factor M.H. and M.Rho, arXiv: [hep-ph]  meson dominance :  2 /dof=187 best fit in the HLS :  2 /dof=1.5 a = 4.55 ; z = 0.55 Violation of the  meson dominance (well-known) can explained by the existence of the infinite tower Hong-Rho-Yee-Yi model :  2 /dof=20.2 a = 3.01 ; z =

◎ We relate holographic QCD models to the HLS model by integrating out heavier mesons in hQCD models. ・ Showed that the infinite tower of vector mesons can contribute even to pion EM form factor → can fit the data well as the  meson dominance ・ Violation of  meson dominance in wp transition form factor can be explained by the existence of infinite tower ・ Violation of r/w meson dominance in the proton form factor is well explained by the existence of infinite tower 6. Summary