JET-COOLED CAVITY RING-DOWN SPECTROSCOPY OF THE A 2 E ″ – X 2 A 2 ′ VIBRONIC TRANSITION OF NO 3 Laser Spectroscopy Facility Department of Chemistry The.

Slides:



Advertisements
Similar presentations
OBSERVATION OF THE A-X ELECTRONIC TRANSITION OF C 6 -C 10 PEROXY RADICALS Neal D. Kline and Terry A. Miller Laser Spectroscopy Facility The Ohio State.
Advertisements

Gabriel M. P. Just, Patrick Rupper, Dmitry G. Melnik and Terry A. Miller EXPERIMENTAL PROGRESS FOR HIGH RESOLUTION CAVITY RINGDOWN SPECTROSCOPY OF JET-
Rotationally-resolved infrared spectroscopy of the polycyclic aromatic hydrocarbon pyrene (C 16 H 10 ) using a quantum cascade laser- based cavity ringdown.
Gabriel M. P. Just, Patrick Rupper, Dmitry G. Melnik and Terry A
LASER INDUCED FLUORESCENCE STUDY OF B-A TRANSITION OF ISOPROPOXY Rabi Chhantyal-Pun, Terry Miller Department of Chemistry The Ohio State University Jinjun.
D.L. KOKKIN, N.J. REILLY, J.A. JOESTER, M. NAKAJIMA, K. NAUTA, S.H. KABLE and T.W. SCHMIDT Direct Observation of the c State of C 2 School of Chemistry,
DEVELOPMENT OF BROAD RANGE SCAN CAPABILITIES WITH JET COOLED CAVITY RINGDOWN SPECTROSCOPY Terrance Codd, Ming-Wei Chen, Terry A. Miller The Ohio State.
J-Specific Dynamics in an Optical Centrifuge Matthew J. Murray, Qingnan Liu, Carlos Toro, Amy S. Mullin* Department of Chemistry and Biochemistry, University.
Kuo-Hsiang Hsu and Yuan-Pern Lee Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Taiwan Meng Huang.
Terrance J. Codd*, John Stanton†, and Terry A. Miller* * The Laser Spectroscopy Facility, Department of Chemistry and Biochemistry The Ohio State University,
Rovibronic Analysis of the State of the NO 3 Radical Henry Tran, Terrance J. Codd, Dmitry Melnik, Mourad Roudjane, and Terry A. Miller Laser Spectroscopy.
MODERATE RESOLUTION JET COOLED CAVITY RINGDOWN SPECTROSCOPY OF THE A STATE OF NO 3 RADICAL Terrance J. Codd, Ming-Wei Chen, Mourad Roudjane and Terry A.
3 – 3.5  MIR CRDS 1 – 1.5  NIR CRDS  m -HV O2O2 N2N2 OH X a A B X X ~
First high resolution analysis of the 5 3 band of nitrogen dioxide (NO 2 ) near 1.3 µm Didier Mondelain 1, Agnès Perrin 2, Samir Kassi 1 & Alain Campargue.
DENNIS J. CLOUTHIER, ROBERT GRIMMINGER, and BING JIN, Department of Chemistry, University.
DMITRY G. MELNIK 1 MING-WEI CHEN 1, JINJUN LIU 2, and TERRY A. MILLER 1, and ROBERT F. CURL 3 and C. BRADLEY MOORE 4 EFFECTS OF ASYMMETRIC DEUTERATION.
FTIR Spectroscopy of the n4 bands of 14NO3 and 15NO3
Funded by: NSF Timothy C. Steimle, Fang Wang a Arizona State University, USA & Joe Smallman b, Physics Imperial College, London a Currently at JILA THE.
ROTATIONALLY RESOLVED A 2 A 1 - X 2 E ELECTRONIC SPECTRA OF SYMMETRIC METHOXY RADICALS: CH 3 O AND CD 3 O (RI08) Laser Spectroscopy Facility Department.
DMITRY G. MELNIK AND TERRY A. MILLER The Ohio State University, Dept. of Chemistry, Laser Spectroscopy Facility, 120 W. 18th Avenue, Columbus, Ohio
ROTATIONALLY RESOLVED ELECTRONIC SPECTRA OF SECONDARY ALKOXY RADICALS 06/22/10 JINJUN LIU AND TERRY A. MILLER Laser Spectroscopy Facility Department of.
High-Resolution Spectroscopy of the ν 8 Band of Methylene Bromide Using a Quantum Cascade Laser-Based Cavity Ringdown Spectrometer Jacob T. Stewart and.
FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL HYDROSULFIDES: DETECTION OF KSH P. M. SHERIDAN, M. K. L. BINNS, J. P. YOUNG Department of Chemistry.
DMITRY G. MELNIK AND TERRY A. MILLER The Ohio State University, Dept. of Chemistry, Laser Spectroscopy Facility, 120 W. 18th Avenue, Columbus, Ohio
1 Infrared Spectroscopy of Ammonium Ion MG03: Sub-Doppler Spectroscopy of ND 3 H + Ions in the NH Stretch Mode MG04: Infrared Spectroscopy of Jet-cooled.
Cavity Ringdown Spectroscopy and Kinetics of n-Butoxy Isomerization: Detection of the A-X Band of HOC 4 H 8 OO Matthew K. Sprague 1, Mitchio Okumura 1,
Jet cooled Laser Induced Fluorescence Spectroscopy of FCH 2 CH 2 O and other photo-fragments of XCH 2 CH 2 ONO (X=F,Cl,Br,OH) Rabi Chhantyal-Pun, Ming-Wei.
Laboratory of Molecular Spectroscopy, Pusan National University, Pusan, Republic of Korea Spectroscopic identification of isomeric trimethylbenzyl radicals.
ULTRAHIGH-RESOLUTION SPECTROSCOPY OF DIBENZOFURAN S 1 ←S 0 TRANSITION SHUNJI KASAHARA 1, Michiru Yamawaki 1, and Masaaki Baba 2 1) Molecular Photoscience.
ROTATIONALLY RESOLVED A 2 A 1 —X 2 E ELECTRONIC SPECTRA OF DEUTERATED ISOTOPOMERS OF THE METHOXY RADICAL Jinjun Liu, Ming-Wei Chen and Terry A. Miller.
Rotationally-Resolved Spectroscopy of the Bending Modes of Deuterated Water Dimer JACOB T. STEWART AND BENJAMIN J. MCCALL DEPARTMENT OF CHEMISTRY, UNIVERSITY.
JET-COOLED LASER SPECTROSCOPY OF A JAHN- TELLER AND PSEUDO JAHN-TELLER ACTIVE MOLECULE: THE NITRATE RADICAL (NO 3 ) 1 Laser Spectroscopy Facility Department.
Rotationally-resolved high-resolution laser spectroscopy of the B 2 E’ – X 2 A 2 ’ transition of 14 NO 3 radical 69th International Symposium on Molecular.
THE ANALYSIS OF HIGH RESOLUTION SPECTRA OF ASYMMETRICALLY DEUTERATED METHOXY RADICALS CH 2 DO AND CHD 2 O (RI09) MING-WEI CHEN 1, JINJUN LIU 2, DMITRY.
HIGH RESOLUTION JET COOLED CAVITY RINGDOWN SPECTROSCOPY OF THE A STATE BAND OF THE NO 3 RADICAL Terrance J. Codd, Mourad Roudjane and Terry A. Miller.
ENERGY LEVELS OF THE NITRATE RADICAL BELOW 2000 CM -1 Christopher S. Simmons, Takatoshi Ichino and John F. Stanton Molecular Spectroscopy Symposium, June.
High resolution cavity ringdown spectroscopy of jet-cooled deuterated methyl peroxy (CD 3 O 2 ) in the near IR Shenghai Wu, Patrick Rupper, Patrick Dupré.
DMITRY G. MELNIK AND TERRY A. MILLER The Ohio State University, Dept. of Chemistry, Laser Spectroscopy Facility, 120 W. 18th Avenue, Columbus, Ohio
The A ← X ABSORPTION SPECTRUM OF 2-NITROOXYBUTYL PEROXY RADICAL
A NEW ANALYSIS OF A VERY OLD SPECTRUM: THE HIGHLY PERTURBED A 2  i – X 2  i BAND SYSTEM OF THE CHLORINE CATION (Cl 2 ) Mohammed A. Gharaibeh and Dennis.
LASER-INDUCED FLUORESCENCE (LIF) SPECTROSCOPY OF CYCLOHEXOXY
JET-COOLED A-X SPECTRA OF THE β- HYDROXYETHYLPEROXY RADICAL AND ITS ISOTOPOLOGUES Laser Spectroscopy Facility Department of Chemistry The Ohio State University.
CH 3 D Near Infrared Cavity Ring-down Spectrum Reanalysis and IR-IR Double Resonance S. Luna Yang George Y. Schwartz Kevin K. Lehmann University of Virginia.
THEORETICAL INVESTIGATION OF LARGE AMPLITUDE MOTION IN THE METHYL PEROXY RADICAL Gabriel Just, Anne McCoy and Terry Miller The Ohio State University.
DISPERSED FLUORESCENCE (DF) SPECTROSCOPY OF JET-COOLED METHYLCYCLOHEXOXY (MCHO) RADICALS Jahangir Alam, Md Asmaul Reza, Amy Mason, Neil Reilly and Jinjun.
D. Zhao, K.D. Doney, H. Linnartz Sackler Laboratory for Astrophysics, Leiden Observatory, University of Leiden, the Netherlands T he 3 μm Infrared Spectra.
JET-COOLED LASER-INDUCED FLUORESCENCE SPECTROSCOPY OF T-BUTOXY NEIL J. REILLY* and JINJUN LIU Department of Chemistry University of Louisville TERRY A.
Ab initio calculation on the photoelectron spectrum of methoxide Lan Cheng, Takatoshi Ichino, Marissa Weichman, Jongjin Kim, Dan Neumark, and John Stanton.
OBSERVATION AND ANALYSIS OF THE A 1 -A 2 SPLITTING OF CH 3 D M. ABE*, H. Sera and H. SASADA Department of Physics, Faculty of Science and Technology, Keio.
70th International Symposium on the Molecular Spectroscopy June 22-26, 2015 The Laser Spectroscopy Facility Department of Chemistry and Biochemistry Mourad.
* Funded by NSF. Xiujuan Zhuang and Timothy C. Steimle* Department of Chemistry and Biochemistry Arizona State University, Tempe,AZ Neil Reilly,
A. Nishiyama a, K. Nakashima b, A. Matsuba b, and M. Misono b a The University of Electro-Communications b Fukuoka University High Resolution Spectroscopy.
Laser Spectroscopy of the C 1 Σ + – X 1 Σ + Transition of ScI ZHENWU LIAO, MEI YANG, MAN-CHOR CHAN Department of Chemistry, The Chinese University of Hong.
The 70 th International Symposium on Molecular Spectroscopy, TH07, June 23, The 70 th Meeting of International Symposium on Molecular Spectroscopy,
Sub-Doppler Jet-Cooled Infrared Spectroscopy of ND 2 H 2 + and ND 3 H + in NH Stretch Fundamental Modes Astronomical Molecular Spectroscopy in the Age.
VIBRONIC ANALYSIS FOR TRANSITION OF ISOPROPOXY Rabi Chhantyal-Pun, Mourad Roudjane, Dmitry G. Melnik and Terry A. Miller TD03.
High-resolution mid-infrared spectroscopy of deuterated water clusters using a quantum cascade laser- based cavity ringdown spectrometer Jacob T. Stewart.
Terrance J. Codd, Mourad Roudjane, Ming-Wei Chen, and Terry A. Miller The Ohio State University.
Development of a Fast Ion Beam Spectrometer for Molecular Ion Spectroscopy Departments of Chemistry and Astronomy University of Illinois at Urbana-Champaign.
JET-COOLED LASER-INDUCED FLUORESCENCE SPECTROSCOPY OF LARGE SECONDARY ALKOXY RADICALS 06/21/10 JINJUN LIU, MING-WEI CHEN, AND TERRY A. MILLER Laser Spectroscopy.
~ ~ DETERMINATION OF THE TRANSITION DIPOLE MOMENT OF THE A - X
A Tale of Two Controversies
The Near-IR Spectrum of CH3D
N2 Vibrational Temperature, Gas Temperature,
Analysis of the Rotationally Resolved Spectra to the Degenerate (
Jinjun Liu, Ming-Wei Chen, John T. Yi,
(Kobe Univ. ) Takumi Nakano, Ryo Yamamoto, Shunji Kasahara
High-resolution Laser Spectroscopy
A. M. Daly, B. J. Drouin, J. C. Pearson, K. Sung, L. R. Brown
HIGH RESOLUTION LASER SPECTROSCOPY OF NICKEL MONOBORIDE, NiB
Presentation transcript:

JET-COOLED CAVITY RING-DOWN SPECTROSCOPY OF THE A 2 E ″ – X 2 A 2 ′ VIBRONIC TRANSITION OF NO 3 Laser Spectroscopy Facility Department of Chemistry The Ohio State University 6/23/2010 MING-WEI CHEN, GABRIEL M. P. JUST *, TERRANCE J. CODD and TERRY A. MILLER ~~ * Current affiliation: Lawrence Berkeley National Laboratory

MIR NIR LEDF LIF Absorption Vis T. Ishiwata, I. Tanaka, K. Kawaguchi, and E. Hirota, J. Chem. Phys., 82, 2196 (1985). R. R. Fredl and S. P. Sander, J. Phys. Chem., 91, 2721 (1987). E. Hirota, K. Kawaguchi, T. Ishiwata, and I. Tanaka, J. Chem. Phys., 95, 771 (1991). K. Kawaguchi, T. Ishiwata, I. Tanaka, and E. Hirota, Chem. Phys. Lett., 180, 436 (1991). T. Ishiwata, I. Tanaka, K. Kawaguchi, and E. Hirota, J. Mol. Spec., 183, 167 (1992). E. Hirota, T. Ishiwata, K. Kawaguchi, M. Fujitake, N. Ohashi, and I. Tanaka, J. Chem. Phys., 107, 2829 (1997). K. Kawaguchi, T. Ishiwata, E. Hirota, and I Tanaka, Chem. Phys., 231, 193 (1998). A. Deev, J. Sommar, and M. Okumura, J. Chem. Phys., 122, /1 (2005). M. Jacox and W. E. Thompson, J. Phys. Chem. A., 114, 4712 (2010). K. Takematsu, N. Eddingsaas, and M. Okumura, 65 th International Symposium on Molecular Spectroscopy, TF12 (2009). D. A. Ramsay, Proc. Colloq. Spectrosc. Int., 10, 583 (1962). W. J. Marinelli, D. M. Swanson, and H. S. Johnston, J. Chem. Phys., 76, 2864 (1982). M. Jacox and W. E. Thompson, 64 th International Symposium on Molecular Spectroscopy, TF12 (2009). H. H. Nilson, L. Pastemack, and J. R. McDonald, J. Phys. Chem., 87, 1286 (1983). T. Ishiwata, I. Fujiwara, Y. Naruge, K. Obl, and I. Tanaka, J. Chem. Phys., 87, 1349 (1983). B. Kim, P. L. Hunter, and H. S. Johnston, J. Chem. Phys., 96, 4057 (1992). R. T. Carter, K. F. Schmidt, H. Bitto, and J. R. Huber, Chem. Phys. Lett., 257, 297 (1996). L. Valachovic C. Riehn, K. Mikhaylichenko and C. Wittig, Chem. Phys. Lett., 258, 644 (1996). S. Kasahara, K. Tada, M. Baba, T. Ishiwata, E. Hirota, 65 th International Symposium on Molecular Spectroscopy, WJ05 (2010).

NO 3 ─ NO 3 + e ─ MIR NIR LEDF PDS LIF Absorption Vis NO 3 + e ─ A. Weaver, D. W. Arnold, S. E. Bradforth, and D. M. Neumark, J. Chem. Phys., 94, 170 (1991). B. Kim, H. S. Jhonston, D. A. Clabo, Jr., and H. F. Schaefer III, J. Chem. Phys., 88, 3204 (1988). R. D. Davy and H. F. Schaefer III, J. Chem. Phys., 91, 4410 (1989). J. F. Stanton, J. Gauss, and R. J. Bartlet, J. Chem. Phys., 94, 4084 (1991). V. R. Morris, S. C. Bhatia, and J. H. Hall, Jr., J. Phys. Chem., 94, 7414 (1991). V. R. Morris, S. C. Bhatia, and J. H. Hall, Jr., J. Phys. Chem., 95, 9203 (1991). J. F. Stanton, J. Gauss, and R. J. Bartlet, J. Chem. Phys., 97, 5554 (1992). M. Mayer, L. S. Cederbaum, and H. Köppel, J. Chem. Phys., 100, 899 (1994) W. Eisfeld and K. Morokuma, J. Chem. Phys., 113, 5587 (2000). M. Okumura, J. F. Stanton, A. Deev, and J. Sommar, Phys. Scr., 73, C64 (2006). J. F. Stanton, J. Chem. Phys., 126, (2007). J. F. Stanton, Mol. Phys., 107, 1059 (2009). J. F. Stanton, Phys. Chem. Chem. Phys., 11, 4724 (2009).

HR-LIF HR-SEP HR-CRDS  Comprehensive study of the molecular structure with jet-cooled, high resolution spectroscopy of NO 3 of the three lowest energy electronic states.  The three energetically lowest states are coupled by vibronic interaction, and therefore a model molecule for understanding the coupling between nearby potential energy surfaces and the Jahn-Teller (JT)/pseudo Jahn-Teller (PJT) effects M. Okumura J. F. Stanton, A. Deev and J. Sommar, Phys. Scr., 73, C64 (2006).

Or Raman Cell 1st stokes ∼ 1.3 μm ∼ 4 mJ Δν ∼ 200 MHz (limited by pressure broadening in H 2 ) BBO YAG 20 Hz BBO ∼ 1.3 μm ∼ 2mJ Δν ∼ 70 MHz (measured) InGaAs Detector 67 cm mJ / pulse Δν (FWHM) ∼ MHz (FT limited)

IR Beam 9 mm -HV radical densities of molecules/cm 3 (10 mm downstream, probed) rotational temperature of K (residual Δν Doppler ~155MHz at 20K) plasma voltage ~ 500 V, I  1 A (~ 400 mA typical), 100 µs length dc and/or rf discharge, discharge localized between electrode plates, increased signal compared to longitudinal geometry Previous similar slit-jet designs: D.J. Nesbitt group, Chem. Phys. Lett. 258, 207 (1996) R.J. Saykally group, Rev. Sci. Instrum. 67, 410 (1996) T. A. Miller group, Phys. Chem. Chem. Phys. 8, 1682 (2006). 5 cm 5 mm 10 mm Electrode Viton Poppet N2O5N2O5

High resolution band at room temperature: E. Hirota, T. Ishiwata, K. Kawaguchi, M. Dujitake, N. Ohashi, I. Tanaka. J. Chem. Phys. 107, 2829 (1997)

Molecular constants used for simulation are from: Eizi Hirota, Takashi Ishiwata, Kentarou Kawaguchi, Masaharu Dujitake, Nobukimi Ohashi, Ikuzo Tanaka. J. Chem. Phys. 107, 2829 (1997)

N′=6,K′=6 ΔJ=–1, ΔK=0 P branch N″=7 Q branch ΔJ=0, ΔK=0 **** Labeled with *

K=0 K=3 P branch N″=7 R branch N″=5 ΔJ=±1, ΔK=0 N′=6,K′=6

K=0 K=3 P branch N″=7 R branch N″= GHz1.652GHz1.058GHz1.631GHz N=J+1/2 N=J-1/2 N=J+1/2 N=J-1/2 N′=6,K′=6 ΔJ=±1, ΔK=0

 Existence of K′=3, N′=3 level splitting has not been clarified yet.  Six A state’s K≠0 rotational levels are demonstrated to split.  The relation of the K splitting with spin-rotation is not yet known.  N′=4, K′=3 and N′=6, K′=6 levels seem to have bigger perturbation than others. ~

 Summary:  Jet-cooled rotationally resolved cavity ring-down spectra are successfully measured for several bands (0 0 0, 2 1 0, 4 1 0, ) of transitions of nitrate radicals (vibronic and origin).  Preliminary assignment of the jet-cooled band of the transition shows more K′ ≠0 splitting in the spectrum.  Future works:  Continuing the analysis of the band, and begin the analysis of the and bands  Determine the mechanism for the state K splitting.  Study NO 3 electronic transition by using different approaches: Jet-cooled CRDS and LIF/SEP/DF.  Summary:  Jet-cooled rotationally resolved cavity ring-down spectra are successfully measured for several bands (0 0 0, 2 1 0, 4 1 0, ) of transitions of nitrate radicals (vibronic and origin).  Preliminary assignment of the jet-cooled band of the transition shows more K′ ≠0 splitting in the spectrum.  Future works:  Continuing the analysis of the band, and begin the analysis of the and bands  Determine the mechanism for the state K splitting.  Study NO 3 electronic transition by using different approaches: Jet-cooled CRDS and LIF/SEP/DF.

The Okumura Group (CIT): Dr. Okumura Kana Takematsu The Miller Group (OSU): Dr. Miller Dmitry Melnik (MI13) Phillip Thomas (MI04) Jinjun Liu (TG14) Rabi Chhantyal-Pun (MI07) Terrance Codd Neal Klein Funding: NSF DOE Your attention!

Molecular constants used for simulation are from: Eizi Hirota, Takashi, Ishiwata, Kentarou Kawaguchi, Masaharu Dujitake, Nobukimi Ohashi, Ikuzo Tanaka. J. Chem. Phys. 107, 2829 (1997)  Reproduced signal.  Simulation has qualitative agreement with the jet-cooled spectrum.  Extra lines are not represented in the simulation.

K=0 K=3 K=6 K=9 N=J+1/2 N=J-1/2 N=J+1/2 N=J-1/2 N=J+1/2 N=J-1/2 N=J+1/2 N=J-1/2

Diagonal, rigid rotor & centrifugal distortion* Diagonal, spin-rotation* Off-diagonal, spin-rotation* *Eizi Hirota, Takashi, Ishiwata, Kentarou Kawaguchi, Masaharu Dujitake, Nobukimi Ohashi, Ikuzo Tanaka. J. Chem. Phys. 107, 2829 (1997) Nuclear spin statistical weight ( Γ ev = 2 A 2 ’ ) is considered. Vanished transitions contains: K” = 0 (while N” = even), 6n ±1, 6n±2. (n = integer) Planarity condition: 2D N +3D NK +4D K =0

q R - (5,3) q R + (5,3) q Q + (7,6) q Q + (6,3) q Q - (6,3) q Q + (6,3) q Q - (6,3) “+”: N = J (F 1 ) “–”: N = J – 0.5 (F 2 ) q Q + (6,6)

Δν~250MHz

L. Valachovic C. Riehn, K. Mikhaylichenko and C. Wittig, Chem. Phys. Lett., 258, 644 (1996). R. T. Carter K. F. Schmidt, H. Bitto and J. R. Huber, Chem. Phys. Lett., 257, 297 (1996). Moderate resolutionHigh resolution pyrolysis discharge S. Kasahara, K. Tada, M. Baba, T. Ishiwata, E. Hirota, 65 th International Symposium on Molecular Spectroscopy, WJ05 (2010).

Deev et al. (Okumura group), J. Chem. Phys. 122, (2005)

Nd:YAG (20Hz) Diode laser (CW) Ti:Sa Ring (CW) PZT Driver PD OC BD λ/2 BS P Ti:Sa OI P. Dupre and T. A. Miller, Rev. Sci. Inst., 78, (2007) mJ / pulse Δν (FWHM) ∼ MHz (FT limited)

pulse continuous Jet Excitation laser beam N 2 O 5 with He/Ne mixture Dump laser beam Heated nozzle tip