JET-COOLED CAVITY RING-DOWN SPECTROSCOPY OF THE A 2 E ″ – X 2 A 2 ′ VIBRONIC TRANSITION OF NO 3 Laser Spectroscopy Facility Department of Chemistry The Ohio State University 6/23/2010 MING-WEI CHEN, GABRIEL M. P. JUST *, TERRANCE J. CODD and TERRY A. MILLER ~~ * Current affiliation: Lawrence Berkeley National Laboratory
MIR NIR LEDF LIF Absorption Vis T. Ishiwata, I. Tanaka, K. Kawaguchi, and E. Hirota, J. Chem. Phys., 82, 2196 (1985). R. R. Fredl and S. P. Sander, J. Phys. Chem., 91, 2721 (1987). E. Hirota, K. Kawaguchi, T. Ishiwata, and I. Tanaka, J. Chem. Phys., 95, 771 (1991). K. Kawaguchi, T. Ishiwata, I. Tanaka, and E. Hirota, Chem. Phys. Lett., 180, 436 (1991). T. Ishiwata, I. Tanaka, K. Kawaguchi, and E. Hirota, J. Mol. Spec., 183, 167 (1992). E. Hirota, T. Ishiwata, K. Kawaguchi, M. Fujitake, N. Ohashi, and I. Tanaka, J. Chem. Phys., 107, 2829 (1997). K. Kawaguchi, T. Ishiwata, E. Hirota, and I Tanaka, Chem. Phys., 231, 193 (1998). A. Deev, J. Sommar, and M. Okumura, J. Chem. Phys., 122, /1 (2005). M. Jacox and W. E. Thompson, J. Phys. Chem. A., 114, 4712 (2010). K. Takematsu, N. Eddingsaas, and M. Okumura, 65 th International Symposium on Molecular Spectroscopy, TF12 (2009). D. A. Ramsay, Proc. Colloq. Spectrosc. Int., 10, 583 (1962). W. J. Marinelli, D. M. Swanson, and H. S. Johnston, J. Chem. Phys., 76, 2864 (1982). M. Jacox and W. E. Thompson, 64 th International Symposium on Molecular Spectroscopy, TF12 (2009). H. H. Nilson, L. Pastemack, and J. R. McDonald, J. Phys. Chem., 87, 1286 (1983). T. Ishiwata, I. Fujiwara, Y. Naruge, K. Obl, and I. Tanaka, J. Chem. Phys., 87, 1349 (1983). B. Kim, P. L. Hunter, and H. S. Johnston, J. Chem. Phys., 96, 4057 (1992). R. T. Carter, K. F. Schmidt, H. Bitto, and J. R. Huber, Chem. Phys. Lett., 257, 297 (1996). L. Valachovic C. Riehn, K. Mikhaylichenko and C. Wittig, Chem. Phys. Lett., 258, 644 (1996). S. Kasahara, K. Tada, M. Baba, T. Ishiwata, E. Hirota, 65 th International Symposium on Molecular Spectroscopy, WJ05 (2010).
NO 3 ─ NO 3 + e ─ MIR NIR LEDF PDS LIF Absorption Vis NO 3 + e ─ A. Weaver, D. W. Arnold, S. E. Bradforth, and D. M. Neumark, J. Chem. Phys., 94, 170 (1991). B. Kim, H. S. Jhonston, D. A. Clabo, Jr., and H. F. Schaefer III, J. Chem. Phys., 88, 3204 (1988). R. D. Davy and H. F. Schaefer III, J. Chem. Phys., 91, 4410 (1989). J. F. Stanton, J. Gauss, and R. J. Bartlet, J. Chem. Phys., 94, 4084 (1991). V. R. Morris, S. C. Bhatia, and J. H. Hall, Jr., J. Phys. Chem., 94, 7414 (1991). V. R. Morris, S. C. Bhatia, and J. H. Hall, Jr., J. Phys. Chem., 95, 9203 (1991). J. F. Stanton, J. Gauss, and R. J. Bartlet, J. Chem. Phys., 97, 5554 (1992). M. Mayer, L. S. Cederbaum, and H. Köppel, J. Chem. Phys., 100, 899 (1994) W. Eisfeld and K. Morokuma, J. Chem. Phys., 113, 5587 (2000). M. Okumura, J. F. Stanton, A. Deev, and J. Sommar, Phys. Scr., 73, C64 (2006). J. F. Stanton, J. Chem. Phys., 126, (2007). J. F. Stanton, Mol. Phys., 107, 1059 (2009). J. F. Stanton, Phys. Chem. Chem. Phys., 11, 4724 (2009).
HR-LIF HR-SEP HR-CRDS Comprehensive study of the molecular structure with jet-cooled, high resolution spectroscopy of NO 3 of the three lowest energy electronic states. The three energetically lowest states are coupled by vibronic interaction, and therefore a model molecule for understanding the coupling between nearby potential energy surfaces and the Jahn-Teller (JT)/pseudo Jahn-Teller (PJT) effects M. Okumura J. F. Stanton, A. Deev and J. Sommar, Phys. Scr., 73, C64 (2006).
Or Raman Cell 1st stokes ∼ 1.3 μm ∼ 4 mJ Δν ∼ 200 MHz (limited by pressure broadening in H 2 ) BBO YAG 20 Hz BBO ∼ 1.3 μm ∼ 2mJ Δν ∼ 70 MHz (measured) InGaAs Detector 67 cm mJ / pulse Δν (FWHM) ∼ MHz (FT limited)
IR Beam 9 mm -HV radical densities of molecules/cm 3 (10 mm downstream, probed) rotational temperature of K (residual Δν Doppler ~155MHz at 20K) plasma voltage ~ 500 V, I 1 A (~ 400 mA typical), 100 µs length dc and/or rf discharge, discharge localized between electrode plates, increased signal compared to longitudinal geometry Previous similar slit-jet designs: D.J. Nesbitt group, Chem. Phys. Lett. 258, 207 (1996) R.J. Saykally group, Rev. Sci. Instrum. 67, 410 (1996) T. A. Miller group, Phys. Chem. Chem. Phys. 8, 1682 (2006). 5 cm 5 mm 10 mm Electrode Viton Poppet N2O5N2O5
High resolution band at room temperature: E. Hirota, T. Ishiwata, K. Kawaguchi, M. Dujitake, N. Ohashi, I. Tanaka. J. Chem. Phys. 107, 2829 (1997)
Molecular constants used for simulation are from: Eizi Hirota, Takashi Ishiwata, Kentarou Kawaguchi, Masaharu Dujitake, Nobukimi Ohashi, Ikuzo Tanaka. J. Chem. Phys. 107, 2829 (1997)
N′=6,K′=6 ΔJ=–1, ΔK=0 P branch N″=7 Q branch ΔJ=0, ΔK=0 **** Labeled with *
K=0 K=3 P branch N″=7 R branch N″=5 ΔJ=±1, ΔK=0 N′=6,K′=6
K=0 K=3 P branch N″=7 R branch N″= GHz1.652GHz1.058GHz1.631GHz N=J+1/2 N=J-1/2 N=J+1/2 N=J-1/2 N′=6,K′=6 ΔJ=±1, ΔK=0
Existence of K′=3, N′=3 level splitting has not been clarified yet. Six A state’s K≠0 rotational levels are demonstrated to split. The relation of the K splitting with spin-rotation is not yet known. N′=4, K′=3 and N′=6, K′=6 levels seem to have bigger perturbation than others. ~
Summary: Jet-cooled rotationally resolved cavity ring-down spectra are successfully measured for several bands (0 0 0, 2 1 0, 4 1 0, ) of transitions of nitrate radicals (vibronic and origin). Preliminary assignment of the jet-cooled band of the transition shows more K′ ≠0 splitting in the spectrum. Future works: Continuing the analysis of the band, and begin the analysis of the and bands Determine the mechanism for the state K splitting. Study NO 3 electronic transition by using different approaches: Jet-cooled CRDS and LIF/SEP/DF. Summary: Jet-cooled rotationally resolved cavity ring-down spectra are successfully measured for several bands (0 0 0, 2 1 0, 4 1 0, ) of transitions of nitrate radicals (vibronic and origin). Preliminary assignment of the jet-cooled band of the transition shows more K′ ≠0 splitting in the spectrum. Future works: Continuing the analysis of the band, and begin the analysis of the and bands Determine the mechanism for the state K splitting. Study NO 3 electronic transition by using different approaches: Jet-cooled CRDS and LIF/SEP/DF.
The Okumura Group (CIT): Dr. Okumura Kana Takematsu The Miller Group (OSU): Dr. Miller Dmitry Melnik (MI13) Phillip Thomas (MI04) Jinjun Liu (TG14) Rabi Chhantyal-Pun (MI07) Terrance Codd Neal Klein Funding: NSF DOE Your attention!
Molecular constants used for simulation are from: Eizi Hirota, Takashi, Ishiwata, Kentarou Kawaguchi, Masaharu Dujitake, Nobukimi Ohashi, Ikuzo Tanaka. J. Chem. Phys. 107, 2829 (1997) Reproduced signal. Simulation has qualitative agreement with the jet-cooled spectrum. Extra lines are not represented in the simulation.
K=0 K=3 K=6 K=9 N=J+1/2 N=J-1/2 N=J+1/2 N=J-1/2 N=J+1/2 N=J-1/2 N=J+1/2 N=J-1/2
Diagonal, rigid rotor & centrifugal distortion* Diagonal, spin-rotation* Off-diagonal, spin-rotation* *Eizi Hirota, Takashi, Ishiwata, Kentarou Kawaguchi, Masaharu Dujitake, Nobukimi Ohashi, Ikuzo Tanaka. J. Chem. Phys. 107, 2829 (1997) Nuclear spin statistical weight ( Γ ev = 2 A 2 ’ ) is considered. Vanished transitions contains: K” = 0 (while N” = even), 6n ±1, 6n±2. (n = integer) Planarity condition: 2D N +3D NK +4D K =0
q R - (5,3) q R + (5,3) q Q + (7,6) q Q + (6,3) q Q - (6,3) q Q + (6,3) q Q - (6,3) “+”: N = J (F 1 ) “–”: N = J – 0.5 (F 2 ) q Q + (6,6)
Δν~250MHz
L. Valachovic C. Riehn, K. Mikhaylichenko and C. Wittig, Chem. Phys. Lett., 258, 644 (1996). R. T. Carter K. F. Schmidt, H. Bitto and J. R. Huber, Chem. Phys. Lett., 257, 297 (1996). Moderate resolutionHigh resolution pyrolysis discharge S. Kasahara, K. Tada, M. Baba, T. Ishiwata, E. Hirota, 65 th International Symposium on Molecular Spectroscopy, WJ05 (2010).
Deev et al. (Okumura group), J. Chem. Phys. 122, (2005)
Nd:YAG (20Hz) Diode laser (CW) Ti:Sa Ring (CW) PZT Driver PD OC BD λ/2 BS P Ti:Sa OI P. Dupre and T. A. Miller, Rev. Sci. Inst., 78, (2007) mJ / pulse Δν (FWHM) ∼ MHz (FT limited)
pulse continuous Jet Excitation laser beam N 2 O 5 with He/Ne mixture Dump laser beam Heated nozzle tip