Spatial distributions in a cold strontium Rydberg gas Graham Lochead.

Slides:



Advertisements
Similar presentations
Photoexcitation and Ionization of Cold Helium Atoms R. Jung 1,2 S. Gerlach 1,2 G. von Oppen 1 U. Eichmann 1,2 1 Technical University of Berlin 2 Max-Born-Institute.
Advertisements

First Year Seminar: Strontium Project
Zero-Phonon Line: transition without creation or destruction of phonons Phonon Wing: at T = 0 K, creation of one or more phonons 7. Optical Spectroscopy.
Rydberg & plasma physics using
Ultra-Cold Strontium Atoms in a Pyramidal Magneto-Optical Trap A.J. Barker 1, G. Lochead 2, D. Boddy 2, M. P. A. Jones 2 1 Ponteland High School, Newcastle,
Stimulated Raman Adiabatic Passage into continuum
P. Cheinet, B. Pelle, R. Faoro, A. Zuliani and P. Pillet Laboratoire Aimé Cotton, Orsay (France) Cold Rydberg atoms in Laboratoire Aimé Cotton 04/12/2013.
Probing the Rydberg spectrum of strontium – group meeting Probing the Rydberg spectrum of strontium James Millen.
Graham Lochead 07/09/09 Pulsed laser spectroscopy in strontium.
Anderson localization in BECs
Rydberg physics with cold strontium James Millen Durham University – Atomic & Molecular Physics group.
Coherent State Preparation of a Single Molecule
Approaches to Rydberg spatial distribution measurement Graham Lochead 24/01/11.
Danielle Boddy Durham University – Atomic & Molecular Physics group Laser locking to hot atoms.
Graham Lochead YAO 2009 Towards a strontium pyramid MOT Graham Lochead Durham University
MQDT analysis James Millen. Introduction MQDT analysis – Group meeting 13/09/10 In our experiment we measure the population of Rydberg states using autoionization.
A Magneto-Optical Trap for Strontium James Millen A Magneto-Optical Trap for Strontium – Group meeting 29/09/08.
Danielle Boddy Durham University – Atomic & Molecular Physics group Red MOT is on its way to save the day!
Narrow transitions induced by broad band pulses  |g> |f> Loss of spectral resolution.
Rydberg excitation laser locking for spatial distribution measurement Graham Lochead 24/01/11.
The story unfolds… James Millen The story unfolds… – Group meeting 12/04/10.
Dipole-dipole interactions in Rydberg states. Outline Strontium experiment overview Routes to blockade Dipole-dipole effects.
Cavity QED as a Deterministic Photon Source Gary Howell Feb. 9, 2007.
Studying our cold Rydberg gas James Millen. Level scheme (5s 2 ) 1 S 0 461nm 32MHz (5s5p) 1 P 1 (5sns) 1 S 0 (5snd) 1 D 2 Continuum ~413nm Studying our.
Rydberg & plasma physics using ultra-cold strontium James Millen Supervisor: Dr. M.P.A. Jones Rydberg & plasma physics using ultra-cold strontium.
Studying a strontium MOT – group meeting Studying a strontium MOT James Millen.
Graham Lochead 19/07/10 Lens setup for Rydberg spatial distribution.
1 Coherent processes in metastable helium at room temperature Thomas Lauprêtre Fabienne Goldfarb Fabien Bretenaker Laboratoire Aimé Cotton, Orsay, France.
Autoionization of strontium Rydberg states
References Acknowledgements This work is funded by EPSRC 1.R. P. Abel, U. Krohn, P. Siddons, I. G. Hughes & C. S. Adams, Opt Lett (2009). 2.A.
Guillermina Ramirez San Juan
Excited state spatial distributions Graham Lochead 20/06/11.
First year talk Mark Zentile
A strontium detective story James Millen Strontium detective – Group meeting 19/10/09 Ions‽
Photoassociation Spectroscopy of Ultracold Molecules Liantuan XIAO State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser.
Towards a finite ensemble of ultracold fermions Timo Ottenstein Max-Planck-Institute for Nuclear Physics Heidelberg 19th International IUPAP Conference.
Plasma diagnostics using spectroscopic techniques
Accurate density measurement of a cold Rydberg gas via non-collisional two-body process Anne Cournol, Jacques Robert, Pierre Pillet, and Nicolas Vanhaecke.
Using this method, the four wave transition linewidth was measured at several different frequencies of current modulation. The following plot shows the.
Coherent excitation of Rydberg atoms on an atom chip
Obtaining Ion and Electron Beams From a source of Laser-Cooled Atoms Alexa Parker, Gosforth Academy  Project Supervisor: Dr Kevin Weatherill Department.
D. L. McAuslan, D. Korystov, and J. J. Longdell Jack Dodd Centre for Photonics and Ultra-Cold Atoms, University of Otago, Dunedin, New Zealand. Coherent.
Progress towards laser cooling strontium atoms on the intercombination transition Danielle Boddy Durham University – Atomic & Molecular Physics group.
Quantum Optics with single Nano-Objects. Outline: Introduction : nonlinear optics with single molecule Single Photon sources Photon antibunching in single.
LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS A. Sinatra, G. Reinaudi, F. Laloë (ENS, Paris) Laboratoire Kastler Brossel A. Dantan, E. Giacobino, M. Pinard.
Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan National Taiwan University, Taiwan National Central University, Taiwan National Chung.
Refractive index enhancement with vanishing absorption in an atomic vapor Deniz Yavuz, Nick Proite, Brett Unks, Tyler Green Department of Physics, University.
Resonant dipole-dipole energy transfer from 300 K to 300μK, from gas phase collisions to the frozen Rydberg gas K. A. Safinya D. S. Thomson R. C. Stoneman.
Probing fast dynamics of single molecules: non-linear spectroscopy approach Eli Barkai Department of Physics Bar-Ilan University Shikerman, Barkai PRL.
Enhancing the Macroscopic Yield of Narrow-Band High-Order Harmonic Generation by Fano Resonances Muhammed Sayrac Phys-689 Texas A&M University 4/30/2015.
Excited state spatial distributions in a cold strontium gas Graham Lochead.
Toward a Stark Decelerator for atoms and molecules exited into a Rydberg state Anne Cournol, Nicolas Saquet, Jérôme Beugnon, Nicolas Vanhaecke, Pierre.
Dynamics of Low Density Rydberg Gases Experimental Apparatus E. Brekke, J. O. Day, T. G. Walker University of Wisconsin – Madison Support from NSF and.
Duke University, Physics Department and the Fitzpatrick Institute for Photonics · Durham, NC Collective Nonlinear Optical Effects in an Ultracold Thermal.
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
State Scientific Center of the Russian Federation National Research Institute for Physical-Technical and Radio Engineering Measurements Progress in deep.
Rydberg States of Two Valence Electron Atoms W. E Cooke K.A. Safinya W. Sandner F. Gounand P. Pillet N. H. Tran R. Kachru R. R. Jones.
Daisuke Ando, * Susumu Kuma, ** Masaaki Tsubouchi,** and Takamasa Momose** *Kyoto University, JAPAN **The University of British Columbia, CANADA SPECTROSCOPY.
Millimeter Wave Spectroscopy of Cold 85 Rb Atoms JIANING HAN, YASIR JAMIL, PAUL TANNER, DON NORUM, T. F. GALLAGHER University of Virginia Supported by:
Direct Observation of Rydberg–Rydberg Transitions in Calcium Atoms K. Kuyanov-Prozument, A.P. Colombo, Y. Zhou, G.B. Park, V.S. Petrović, and R.W. Field.
Rydberg atoms part 1 Tobias Thiele.
Multi-step and Multi-photon Excitation Studies of Group-IIB Elements
EMMI Workshop, Münster V.E. Demidov, O. Dzyapko, G. Schmitz, and S.O. Demokritov Münster, Germany G.A. Melkov, Ukraine A.N. Slavin, USA V.L.
Many-Body Effects in a Frozen Rydberg Gas Feng zhigang
Chao Zhuang, Samansa Maneshi, XiaoXian Liu, Ardavan Darabi, Chris Paul, Luciano Cruz, and Aephraim Steinberg Department of Physics, Center for Quantum.
Photon counter with Rydberg atoms
Excitation control of a cold strontium Rydberg gas
State evolution in cold helium Rydberg gas
Strong Coupling of a Spin Ensemble to a Superconducting Resonator
Norm Moulton LPS 15 October, 1999
Presentation transcript:

Spatial distributions in a cold strontium Rydberg gas Graham Lochead

Graham Lochead 09/10/12 The group Matt Jones Liz Bridge Charles Adams Daniel Sadler Danielle Boddy Christophe Vaillant James Millen

Graham Lochead 09/10/12 Rydberg states n = 5 n = 8 n = 7 n = 6 Ionization limit Properties High principal quantum number n n = 68 n = 67 n = 66 H ~ 0.1 nm n = 100 ~ 1 μ m

Graham Lochead 09/10/12 Dipole blockade Strong, tunable interactions C.L. Vaillant et al., J. Phys. B (2012) M. Saffman et al., Rev. Mod. Phys (2010)

Graham Lochead 09/10/12 Dipole blockade spatial effects A. Schwartzkopf et al., Phys. Rev. Lett. 107, (2011) Radius ( μ m) Autocorrelation Position Column density Excited state Ground state

Graham Lochead 09/10/12 Further spatial effects T. Pohl et al., Phys. Rev. Lett. 104, (2010) P. Schauß et al., arXiv: Dynamical crystallisation

Graham Lochead 09/10/12 Outline Coherent Rydberg excitation Laser stabilization CPT in cold strontium atoms Optical Bloch Equation model Two electron information State transfer Autoionization microscopy Statistical distributions

Graham Lochead 09/10/12 Dispenser cell E. M. Bridge et. al., Rev. Sci. Instrum. 80, (2009) Need atomic reference cell Problems: No vapour pressure at room temperature Strontium reacts with glass Solution: Dispenser-based cell

Graham Lochead 09/10/12 Probe/cooling laser stabilization Sub-Doppler frequency modulation spectroscopy 5s 2 5s5p 5snd λ 1 = 461 nm λ 2 = 413 nm Probe Coupling

Graham Lochead 09/10/12 Coupling laser stabilization 5s 2 5s5p 5snd λ 1 = 461 nm λ 2 = 413 nm Probe Coupling R. P. Abel et al, Appl. Phys. Lett. 94, (2009) EIT-based lock M. Fleischhauer et al, Rev. Mod. Phys. 77, 633 (2005)

Graham Lochead 09/10/12 Cold atom source Zeeman slowed atomic beam 10 7 strontium atoms at 5 mK 5 x 10 9 atoms/cm 3

Graham Lochead 09/10/12 Chamber insides R. Löw et al, arXiv: v1

Graham Lochead 09/10/12 Detecting Rydberg atoms Small signal – number resolving Large signal – average only

Graham Lochead 09/10/12 CPT spectra Coupling laser locked Probe laser frequency stepped E-field does not field ionize Sub-natural linewidth Data for n = 56

Graham Lochead 09/10/12 Optical Bloch Equations Free parameters Laser linewidths Laser detuning Amplitude scaling Fixed parameters Rabi frequencies State linewidths 5s 2 5s5p 5snd ΩpΩp ΩcΩc

Graham Lochead 09/10/12 What do two electrons allow us to do?

Graham Lochead 09/10/12 Autoionization Resonant optical ionization for l < 8 Independent of excitation W.E. Cooke et al, Phys. Rev. Lett. 40, 178 (1978)

Graham Lochead 09/10/12 Temporal information J. Millen et al, J. Phys. B (2011) Pulsed dye laser used for this experiment, ECDL for the rest

Graham Lochead 09/10/12 Spectral information J. Millen et al., Phys. Rev. Lett. 105, (2010) E. Y. Xu et al., Phys. Rev. A 35, 1138 (1987) Low Rydberg densityHigh Rydberg density Shape depends on state Multi-channel quantum defect fit

Graham Lochead 09/10/12 State transfer At high density allow the Rydberg gas to evolve: Δt = 0.5 μs Δt = 60 μs Δt = 100 μs At low density spectrum unchanged

Graham Lochead 09/10/12 Lifetime analysis Δt = 100 μs Look at the decay of signal at different spectral points: A A B B Blue line: The decay of the 5s54f 1 F 3 state. 54F state 25μs 60μs

Graham Lochead 09/10/12 Including 5s54f state 13 ± 3% of the Rydberg population transferred to 5s54f state

Graham Lochead 09/10/12 Mechanism The mechanism for population transfer is cold plasma formation: l-changing collisions Black data: population transfer. Red data: spontaneous ionization. Plasma threshold Initial Rydberg # Population transferred Spontaneous ionization M. P. Robinson et. al., Phy. Rev. Lett. 85, 4466 (2000)

Graham Lochead 09/10/12 Focus coupling laser Spatial intensity variation of beam makes a difference Fewer Rydberg atoms – no plasma formation

Graham Lochead 09/10/12 Spatial information Translate a focused autoionizing beam

Graham Lochead 09/10/12 Lens setup 10 μm resolution 100 mm long

Graham Lochead 09/10/12 Rydberg spatial distribution Ground state fluorescence collected Can take distributions in both directions

Graham Lochead 09/10/12 Spatial widths: Coupling power OBE simulation Autoionizing probability

Graham Lochead 09/10/12 Spatial widths: Autoionizing power T.F. Gallagher, Rydberg Atoms

Graham Lochead 09/10/12 Detection efficiency n g : ground state density P de → 1 V : overlap volume ρ 33 : Rydberg probability C : single ion conversion ε: detector efficiency ε = 21 ± 4 %

Graham Lochead 09/10/12 Statistical information

Graham Lochead 09/10/12 Towards blockade H. Schempp et al., Phys. Rev. Lett. 104, (2010) 1P11P1 1S01S0 3P03P0 3P13P1 3P23P2 λ = 689 nm Γ = 2π x 7.5 kHz 2 nd stage cooling Blue MOT: ~ 5 mK ~ 2 x 10 9 atoms/cm 3 Red MOT: ~ 400 nK ~ 2 x atoms/cm 3 λ = 461 nm Γ = 2π x 32 MHz 1 st stage cooling n = 75

Graham Lochead 09/10/12 Electrometry Use Stark effect to alter Rydberg distribution

Graham Lochead 09/10/12 Summary Thanks for listening Coherently excite strontium atoms to Rydberg states 10 µm resolution spatial distribution Number resolving technique No interactions seen → Implement second stage cooling

Graham Lochead 09/10/12