Scientific Computing Lab Results Worksheet 4 Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.

Slides:



Advertisements
Similar presentations
Technische Universität München Fakultät für Informatik Scientific Computing in Computer Science Practical Course CFD - Free Boundary Value Problems Tobias.
Advertisements

Lab Course CFD Preliminay Discussion Dr. Miriam Mehl Institut für Informatik Schwerpunkt Wissenschaftliches Rechnen.
Practical Course SC & V Free Boundary Value Problems Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
CSE Seminar Benefits of Hierarchy and Adaptivity Preliminary Discussion Dr. Michael Bader / Dr. Miriam Mehl Institut für Informatik Scientific Computing.
Practical Course SC & V More on Boundaries Dr. Miriam Mehl Institut für Informatik Schwerpunkt Wissenschaftliches Rechnen.
Practical Course SC & V Free Boundary Value Problems Prof. Dr. Hans-Joachim Bungartz Institut für Informatik Schwerpunkt Wissenschaftliches Rechnen.
Institut für Informatik Scientific Computing in Computer Science Practical Course SC & V Time Discretisation Dr. Miriam Mehl.
Applied Computer Science II Chapter 4: Decidability Prof. Dr. Luc De Raedt Institut für Informatik Albert-Ludwigs Universität Freiburg Germany.
Scientific Computing Lab Results Worksheet 2 Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Scientific Programming for(i=0; i b) { a = func1(c,d,i*10); } else if(a < b) { a = func2(e,f,i*10); } else { a = func3(g,h,i*10);
Scientific Computing Lab Results Worksheet 3 Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Scientific Computing Lab Introduction to COMSOL - Multiphysics Dheevatsa Mudigere Institut für Informatik Scientific Computing in Computer Science.
CSE115: Introduction to Computer Science I Dr. Carl Alphonce 219 Bell Hall Office hours: M-F 11:00-11:
Poster Title 95 point, Arial font Primary heading Xx xxx x xx xxxxx xx xxxx xxx xx xx x x xxxxx xxxx xx xxxxx xx xxxxxx xxx xx. X xx xxxx xxxxx xx xxxx.
MATH 310, FALL 2003 (Combinatorial Problem Solving) Lecture 16, Monday, October 6.
THIS IS THE TITLE OF MY POSTER. THIS IS THE TITLE OF MY POSTER NAMES, NAMES, & NAMES This is my abstract. This is my abstract. This is my abstract. This.
Stack-oriented memory allocation... Michael Bader, M. Mehl, Christoph Zenger, Informatik V, TU München Applications of Space Filling Curves Michael Bader.
MULTIPLES OF 2 By Preston, Lincoln and Blake. 2 X 1 =2 XX 2X1=2 1+1=2.
Scientific Computing Lab Organization Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Introduction to Scientific Computing II Molecular Dynamics – Introduction Dr. Miriam Mehl Institut für Informatik Scientific Computing In Computer Science.
computer
Divide by 8 page – groups of 8 Division Sentence 0 ÷ 8 = 0.
Insert Project Name Insert Institution Name Insert Presenter Name Insert Date.
Bellwork.  Why is it important to understand what a responding variable is in an experiment when performing an experiment?
Independent and Dependent Variables
Solve x 2 +3x – 5 = 11 xx2x2 +3x-5X 2 +3x-5High/ Low L.
Introduction to Scientific Computing II Multigrid Dr. Miriam Mehl Institut für Informatik Scientific Computing In Computer Science.
Introduction to Scientific Computing II Multigrid Dr. Miriam Mehl.
Introduction to Scientific Computing II Molecular Dynamics – Algorithms Dr. Miriam Mehl Institut für Informatik Scientific Computing In Computer Science.
Scientific Computing Lab Outlook / State of Research Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Lab Course CFD Introduction Dr. Miriam Mehl Institut für Informatik Schwerpunkt Wissenschaftliches Rechnen.
Scientific Computing Lab Organization Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
WEBSITE DEVELOPMENT AGREEMENT Best UGC NET Computer Science coaching Institute.
Multiplying with exponents
Using Variable Domain Functions
Scientific Computing Lab
Scientific Computing Lab
BACK SOLUTION:
Pressure Poisson Equation
Announcement MATHCAD for solving system of equation for HW1b
Scientific Computing Lab
Write in Notebook: Try to Answer 1-4 Scientific Notation
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Practical Course SC & V Discretization II AVS Dr. Miriam Mehl
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Scientific Computing Lab
CSA 1100 Historical and Scientific Perspectives on Computer Science and AI Technical Writing Dr. Matthew Montebello.
Scotland and Northern Ireland EQA Scheme Circulation XX
LINGO LAB 3/4.
Scientific Computing Lab
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Topic Speaker :XXX Department:XXX Date:2017/7/3 时间: 日期:
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Scientific Computing Lab
Spatial Discretisation
Aim: Why do we use Scientific notation in Science?
Introduction to Scientific Computing II
Presentation transcript:

Scientific Computing Lab Results Worksheet 4 Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science

Worksheet 4 – Solution 1) m-file Euler.m x_old=x_m; %time step for k=2:N_x+1 for m=2:N_y+1 x_m(k,m) = x_old(k,m) + dt*(d_1*(x_old(k-1,m)+x_old(k+1,m))+… end

Worksheet 4 – Solution 2) m-file Euler_implicit.m while (res>0.0001) res=0.0; for m=2:N_y+1 for k=2:N_x+1 x_m(k,m)=(d_1*(x_m(k-1,m)+x_m(k+1,m))+… end for m=2:N_y+1 for k=2:N_x+1 res=res+(b((m-2)*N_x+k-1)+a_ii*x_m(k,m)-… end res=sqrt(res/(N_x*N_y)); end

Worksheet 4 – Solution 3) m-file worksheet4.m while (t<T_end) if (n==1) x_m=Euler(N_x,N_y,dt,x_m); else x_m=Euler_implicit(N_x,N_y,dt,x_m); end t=t+dt;

Worksheet 4 – Solution N x = N y =3, dt=1/64 t=0

Worksheet 4 – Solution N x = N y =3, dt=1/64 t=1/8

Worksheet 4 – Solution N x = N y =3, dt=1/64 t=2/8

Worksheet 4 – Solution N x = N y =3, dt=1/64 t=3/8

Worksheet 4 – Solution N x = N y =3, dt=1/64 t=4/8

Worksheet 4 – Solution N x = N y =7, dt=1/64 t=0

Worksheet 4 – Solution N x = N y =7, dt=1/64 t=1/8

Worksheet 4 – Solution N x = N y =7, dt=1/64 t=2/8

Worksheet 4 – Solution N x = N y =7, dt=1/64 t=3/8

Worksheet 4 – Solution N x = N y =7, dt=1/64 t=4/8

Worksheet 4 – Solution N x = N y =7, dt=1/256 t=0

Worksheet 4 – Solution N x = N y =7, dt=1/256 t=1/8

Worksheet 4 – Solution N x = N y =7, dt=1/256 t=2/8

Worksheet 4 – Solution N x = N y =7, dt=1/256 t=3/8

Worksheet 4 – Solution N x = N y =7, dt=1/256 t=4/8

Worksheet 4 – Solution N x = N y =15, dt=1/256 t=0

Worksheet 4 – Solution N x = N y =15, dt=1/256 t=1/8

Worksheet 4 – Solution N x = N y =15, dt=1/256 t=2/8

Worksheet 4 – Solution N x = N y =15, dt=1/256 t=3/8

Worksheet 4 – Solution N x = N y =15, dt=1/256 t=4/8

Worksheet 4 – Solution N x = N y =15, dt=1/1024 t=0

Worksheet 4 – Solution N x = N y =15, dt=1/1024 t=1/8

Worksheet 4 – Solution N x = N y =15, dt=1/1024 t=2/8

Worksheet 4 – Solution N x = N y =15, dt=1/1024 t=3/8

Worksheet 4 – Solution N x = N y =15, dt=1/1024 t=4/8

Worksheet 4 – Solution N x = N y =31, dt=1/4096 t=0

Worksheet 4 – Solution N x = N y =31, dt=1/4096 t=1/8

Worksheet 4 – Solution N x = N y =31, dt=1/4096 t=2/8

Worksheet 4 – Solution N x = N y =31, dt=1/4096 t=3/8

Worksheet 4 – Solution N x = N y =31, dt=1/4096 t=3/8

Worksheet 4 – stable cases

Worksheet 4 – unstable cases

Worksheet 4 – Solution x /32 xxx----1/16 xxxxx--1/8 xxxxxxx1/4 1/40961/20481/10241/5121/2561/1281/64h/dt dt<h 2 /2

Worksheet 4 – Solution N x = N y =7, dt=1/64 implicit t=0

Worksheet 4 – Solution N x = N y =7, dt=1/64 implicit t=1/8

Worksheet 4 – Solution N x = N y =7, dt=1/64 implicit t=2/8

Worksheet 4 – Solution N x = N y =7, dt=1/64 implicit t=3/8

Worksheet 4 – Solution N x = N y =7, dt=1/64 implicit t=4/8

Worksheet 4 – Solution N x = N y =15, dt=1/64 implicit t=0

Worksheet 4 – Solution N x = N y =15, dt=1/64 implicit t=1/8

Worksheet 4 – Solution N x = N y =15, dt=1/64 implicit t=2/8

Worksheet 4 – Solution N x = N y =15, dt=1/64 implicit t=3/8

Worksheet 4 – Solution N x = N y =15, dt=1/64 implicit t=4/8

Worksheet 4 – Solution N x = N y =31, dt=1/64 implicit t=0

Worksheet 4 – Solution N x = N y =31, dt=1/64 implicit t=1/8

Worksheet 4 – Solution N x = N y =31, dt=1/64 implicit t=2/8

Worksheet 4 – Solution N x = N y =31, dt=1/64 implicit t=3/8

Worksheet 4 – Solution N x = N y =31, dt=1/64 implicit t=4/8