I. There are 4 basic transformations for a function f(x). y = A f (Bx + C) + D A) f(x) + D (moves the graph + ↑ and – ↓) B) A f(x) 1) If | A | > 1 then.

Slides:



Advertisements
Similar presentations
Chapter 3: Transformations of Graphs and Data
Advertisements

Section 3.5 Transformations Vertical Shifts (up or down) Graph, given f(x) = x 2. Every point shifts up 2 squares. Every point shifts down 4 squares.
2.3 Stretching, Shrinking, and Reflecting Graphs
MTH 112 Elementary Functions Chapter 5 The Trigonometric Functions Section 6 – Graphs of Transformed Sine and Cosine Functions.
Transformation of Functions Section 1.6. Objectives Describe a transformed function given by an equation in words. Given a transformed common function,
Section 1.6 Transformation of Functions
Essential Question: In the equation f(x) = a(x-h) + k what do each of the letters do to the graph?
Transformations Transforming Graphs. 7/9/2013 Transformations of Graphs 2 Basic Transformations Restructuring Graphs Vertical Translation f(x) to f(x)
Table of Contents Functions: Transformations of Graphs Vertical Translation: The graph of f(x) + k appears.
Transformations xf(x) Domain: Range:. Transformations Vertical Shifts (or Slides) moves the graph of f(x) up k units. (add k to all of the y-values) moves.
Negative Exponents Fraction Exponent Graphs Exponential function Misc
1 The graphs of many functions are transformations of the graphs of very basic functions. The graph of y = –x 2 is the reflection of the graph of y = x.
Transformations to Parent Functions. Translation (Shift) A vertical translation is made on a function by adding or subtracting a number to the function.
Transformations We are going to look at some transformation rules today:
College Algebra 2.7 Transformations.
Shifting Graphs Digital Lesson. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 The graphs of many functions are transformations.
Lesson 9-3: Transformations of Quadratic Functions
1.6 PreCalculus Parent Functions Graphing Techniques.
5.1 Stretching/Reflecting Quadratic Relations
2.7 Graphing Absolute Value Functions The absolute value function always makes a ‘V’ shape graph.
Graphing Reciprocal Functions
Function - 2 Meeting 3. Definition of Composition of Functions.
Ch 6 - Graphing Day 1 - Section 6.1. Quadratics and Absolute Values parent function: y = x 2 y = a(x - h) 2 + k vertex (h, k) a describes the steepness.
TRANSFORMATIONS Shifts Stretches And Reflections.
Sullivan PreCalculus Section 2.5 Graphing Techniques: Transformations
3.4 Graphing Techniques; Transformations. (0, 0) (1, 1) (2, 4) (0, 2) (1, 3) (2, 6)
2.5 Transformations and Combinations of Functions.
3-2 Families of Graphs Pre Calc A. Parent Graphs.
Transformations Transformations of Functions and Graphs We will be looking at simple functions and seeing how various modifications to the functions transform.
Stretching, Shrinking, and Reflecting
Graphical Transformations. Quick Review What you’ll learn about Transformations Vertical and Horizontal Translations Reflections Across Axes Vertical.
 You should be able to tell when a graph is shifted, reflected, stretched or shrunk. You should also be able identify transformations from an equation.
 Let c be a positive real number. Vertical and Horizontal Shifts in the graph of y = f(x) are represented as follows. 1. Vertical shift c upward:
Pass out student note handouts. On graph paper, graph the following functions Transformations of Functions.
Section 3.5 Graphing Techniques: Transformations.
MCR 3U SECTION 3.4 REFLECTIONS OF FUNCTIONS. Example 1: Graph the functions and on a single grid.
Digital Lesson Shifting Graphs.
Shifting Graphs. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. As you saw with the Nspires, the graphs of many functions are transformations.
2.5 Shifting, Reflecting, and Stretching Graphs. Shifting Graphs Digital Lesson.
Transformation of Functions Sec. 1.7 Objective You will learn how to identify and graph transformations.
2.7 – Use of Absolute Value Functions and Transformations.
2.7 Absolute Value Functions and Transformations Parent Function of Absolute Value  F(x)= I x I  Graph is a “v-shape”  2 rays meeting at a vertex V(0,0)
Review of Transformations and Graphing Absolute Value
Vocabulary A nonlinear function that can be written in the standard form Cubic Function 3.1Graph Cubic Functions A function where f (  x) =  f (x).
Vocabulary The distance to 0 on the number line. Absolute value 1.9Graph Absolute Value Functions Transformations of the parent function f (x) = |x|.
1. g(x) = -x g(x) = x 2 – 2 3. g(x)= 2 – 0.2x 4. g(x) = 2|x| – 2 5. g(x) = 2.2(x+ 2) 2 Algebra II 1.
Do Now: State the domain of the function.. Academy Algebra II 7.1, 7.2: Graph Exponential Growth and Decay Functions HW: p.482 (6, 10, even), p.489.
Section 1.4 Transformations and Operations on Functions.
HPC 2.5 – Graphing Techniques: Transformations Learning Targets: -Graph functions using horizontal and vertical shifts -Graph functions using reflections.
Pre-Cal Chapter 1 Functions and Graphs Section 1.5 Graphical Transformations.
Section 2.5 Transformations Copyright ©2013, 2009, 2006, 2001 Pearson Education, Inc.
RECAP Functions and their Graphs. 1 Transformations of Functions For example: y = a |bx – c| + d.
Ch. 1 – Functions and Their Graphs 1.4 – Shifting, Reflecting, and Sketching Graphs.
Warm-Up Evaluate each expression for x = -2. 1) (x – 6) 2 4 minutes 2) x ) 7x 2 4) (7x) 2 5) -x 2 6) (-x) 2 7) -3x ) -(3x – 1) 2.
Section 1-5 Graphical Transformations. Section 1-5 vertical and horizontal translations vertical and horizontal translations reflections across the axes.
Transformationf(x) y = f(x) + c or y = f(x) – c up ‘c’ unitsdown ‘c’ units EX: y = x 2 and y = x F(x)-2 xy F(x) xy
6.5 COMBINING TRANSFORMATIONS 1. Multiple Inside Changes Example 2 (a) Rewrite the function y = f(2x − 6) in the form y = f(B(x − h)). (b) Use the result.
Transforming Linear Functions
Section P.3 Transformation of Functions. The Constant Function.
Algebra Exploring Transformations Stretch and Shrink.
Transformations of Functions
Pre-AP Algebra 2 Goal(s):
Who Wants to Be a Transformation Millionaire?
Parent Function Transformations
6.4a Transformations of Exponential Functions
6.4c Transformations of Logarithmic functions
15 – Transformations of Functions Calculator Required
The graph below is a transformation of which parent function?
1.7 Transformations of Functions
Horizontal Shrinks & Stretches Horizontal Shrinks & Stretches
Presentation transcript:

I. There are 4 basic transformations for a function f(x). y = A f (Bx + C) + D A) f(x) + D (moves the graph + ↑ and – ↓) B) A f(x) 1) If | A | > 1 then it is vertically stretched. 2) If 0 < | A | < 1, then it’s a vertical shrink. 3) If A is negative, then it flips over the x-axis. C) f(x + C) (moves the graph +  and –  ) D) f(Bx) or f(B(x)) (factor out the B term if possible) 1) If | B | > 1 then it’s a horizontal shrink. 2) If 0 < | B | < 1, then it’s horizontally stretched. 3) If B is negative, then it flips over the y-axis. Attached to the y – vertical and intuitive Attached to the x – horizontal and counter-intuitive

I. There are 4 basic transformations for a function f(x). y = A f (Bx + C) + D A) f(x) + D (moves the graph + ↑ and – ↓) B) A f(x) 1) If | A | > 1 then it is vertically stretched. 2) If 0 < | A | < 1, then it’s a vertical shrink. 3) If A is negative, then it flips over the x-axis. C) f(x + C) (moves the graph +  and –  ) D) f(Bx) or f(B(x)) (factor out the B term if possible) 1) If | B | > 1 then it’s a horizontal shrink. 2) If 0 < | B | < 1, then it’s horizontally stretched. 3) If B is negative, then it flips over the y-axis. Attached to the y – vertical and intuitive Attached to the x – horizontal and counter-intuitive

I. There are 4 basic transformations for a function f(x). y = A f (Bx + C) + D A) f(x) + D (moves the graph + ↑ and – ↓) B) A f(x) 1) If | A | > 1 then it is vertically stretched. 2) If 0 < | A | < 1, then it’s a vertical shrink. 3) If A is negative, then it flips over the x-axis. C) f(x + C) (moves the graph +  and –  ) D) f(Bx) or f(B(x)) (factor out the B term if possible) 1) If | B | > 1 then it’s a horizontal shrink. 2) If 0 < | B | < 1, then it’s horizontally stretched. 3) If B is negative, then it flips over the y-axis. Attached to the y – vertical and intuitive Attached to the x – horizontal and counter-intuitive

I. There are 4 basic transformations for a function f(x). y = A f (Bx + C) + D A) f(x) + D (moves the graph + ↑ and – ↓) B) A f(x) 1) If | A | > 1 then it is vertically stretched. 2) If 0 < | A | < 1, then it’s a vertical shrink. 3) If A is negative, then it flips over the x-axis. C) f(x + C) (moves the graph +  and –  ) D) f(Bx) or f(B(x)) (factor out the B term if possible) 1) If | B | > 1 then it’s a horizontal shrink. 2) If 0 < | B | < 1, then it’s horizontally stretched. 3) If B is negative, then it flips over the y-axis. Attached to the y – vertical and intuitive Attached to the x – horizontal and counter-intuitive

I. There are 4 basic transformations for a function f(x). y = A f (Bx + C) + D A) f(x) + D (moves the graph + ↑ and – ↓) B) A f(x) 1) If | A | > 1 then it is vertically stretched. 2) If 0 < | A | < 1, then it’s a vertical shrink. 3) If A is negative, then it flips over the x-axis. C) f(x + C) (moves the graph +  and –  ) D) f(Bx) or f(B(x)) (factor out the B term if possible) 1) If | B | > 1 then it’s a horizontal shrink. 2) If 0 < | B | < 1, then it’s horizontally stretched. 3) If B is negative, then it flips over the y-axis. Attached to the y – vertical and intuitive Attached to the x – horizontal and counter-intuitive

I. There are 4 basic transformations for a function f(x). y = A f (Bx + C) + D A) f(x) + D (moves the graph + ↑ and – ↓) B) A f(x) 1) If | A | > 1 then it is vertically stretched. 2) If 0 < | A | < 1, then it’s a vertical shrink. 3) If A is negative, then it flips over the x-axis. C) f(x + C) (moves the graph +  and –  ) D) f(Bx) or f(B(x)) (factor out the B term if possible) 1) If | B | > 1 then it’s a horizontal shrink. 2) If 0 < | B | < 1, then it’s horizontally stretched. 3) If B is negative, then it flips over the y-axis. Attached to the y – vertical and intuitive Attached to the x – horizontal and counter-intuitive