1 Lecture 24: Interconnection Networks Topics: communication latency, centralized and decentralized switches, routing, deadlocks (Appendix F)

Slides:



Advertisements
Similar presentations
What is Flow Control ? Flow Control determines how a network resources, such as channel bandwidth, buffer capacity and control state are allocated to packet.
Advertisements

1 Lecture 12: Interconnection Networks Topics: dimension/arity, routing, deadlock, flow control.
1 Lecture 23: Interconnection Networks Topics: communication latency, centralized and decentralized switches (Appendix E)
1 Lecture 15: PCM, Networks Today: PCM wrap-up, projects discussion, on-chip networks background.
1 Lecture 23: Interconnection Networks Paper: Express Virtual Channels: Towards the Ideal Interconnection Fabric, ISCA’07, Princeton.
1 Lecture 16: On-Chip Networks Today: on-chip networks background.
NUMA Mult. CSE 471 Aut 011 Interconnection Networks for Multiprocessors Buses have limitations for scalability: –Physical (number of devices that can be.
CS 258 Parallel Computer Architecture Lecture 5 Routing February 6, 2008 Prof John D. Kubiatowicz
Communication operations Efficient Parallel Algorithms COMP308.
1 Lecture 13: Interconnection Networks Topics: flow control, router pipelines, case studies.
1 Lecture 25: Interconnection Networks Topics: flow control, router microarchitecture Final exam:  Dec 4 th 9am – 10:40am  ~15-20% on pre-midterm  post-midterm:
1 Lecture 24: Interconnection Networks Topics: topologies, routing, deadlocks, flow control Final exam reminders:  Plan well – attempt every question.
1 Lecture 24: Interconnection Networks Topics: communication latency, centralized and decentralized switches (Sections 8.1 – 8.5)
CSE 291-a Interconnection Networks Lecture 10: Flow Control February 21, 2007 Prof. Chung-Kuan Cheng CSE Dept, UC San Diego Winter 2007 Transcribed by.
1 Lecture 24: Interconnection Networks Topics: topologies, routing, deadlocks, flow control.
1 Lecture 26: Interconnection Networks Topics: flow control, router microarchitecture.
1 Lecture 13: Interconnection Networks Topics: lots of background, recent innovations for power and performance.
1 Lecture 25: Interconnection Networks Topics: communication latency, centralized and decentralized switches, routing, deadlocks (Appendix E) Review session,
Switching, routing, and flow control in interconnection networks.
Interconnect Network Topologies
Interconnection Networks. Applications of Interconnection Nets Interconnection networks are used everywhere! ◦ Supercomputers – connecting the processors.
1 Lecture 23: Interconnection Networks Topics: Router microarchitecture, topologies Final exam next Tuesday: same rules as the first midterm Next semester:
1 The Turn Model for Adaptive Routing. 2 Summary Introduction to Direct Networks. Deadlocks in Wormhole Routing. System Model. Partially Adaptive Routing.
Computer Science Department
Interconnect Networks
On-Chip Networks and Testing
Network Topologies Topology – how nodes are connected – where there is a wire between 2 nodes. Routing – the path a message takes to get from one node.
Distributed Routing Algorithms. In a message passing distributed system, message passing is the only means of interprocessor communication. Unicast, Multicast,
PPC Spring Interconnection Networks1 CSCI-4320/6360: Parallel Programming & Computing (PPC) Interconnection Networks Prof. Chris Carothers Computer.
CSE Advanced Computer Architecture Week-11 April 1, 2004 engr.smu.edu/~rewini/8383.
1 Lecture 7: Interconnection Network Part I: Basic Definitions Part II: Message Passing Multicomputers.
Dynamic Interconnect Lecture 5. COEN Multistage Network--Omega Network Motivation: simulate crossbar network but with fewer links Components: –N.
Computer Architecture Distributed Memory MIMD Architectures Ola Flygt Växjö University
Multiprocessor Interconnection Networks Todd C. Mowry CS 740 November 3, 2000 Topics Network design issues Network Topology.
ECE669 L21: Routing April 15, 2004 ECE 669 Parallel Computer Architecture Lecture 21 Routing.
Anshul Kumar, CSE IITD CSL718 : Multiprocessors Interconnection Mechanisms Performance Models 20 th April, 2006.
1 Lecture 13: LRC & Interconnection Networks Topics: LRC implementation, interconnection characteristics.
1 Lecture 15: Interconnection Routing Topics: deadlock, flow control.
Anshul Kumar, CSE IITD ECE729 : Advanced Computer Architecture Lecture 27, 28: Interconnection Mechanisms In Multiprocessors 29 th, 31 st March, 2010.
BZUPAGES.COM Presentation On SWITCHING TECHNIQUE Presented To; Sir Taimoor Presented By; Beenish Jahangir 07_04 Uzma Noreen 07_08 Tayyaba Jahangir 07_33.
Lecture 16: Router Design
Interconnect Networks Basics. Generic parallel/distributed system architecture On-chip interconnects (manycore processor) Off-chip interconnects (clusters.
Super computers Parallel Processing
Embedded Computer Architecture 5SAI0 Interconnection Networks
Networks: Routing, Deadlock, Flow Control, Switch Design, Case Studies Alvin R. Lebeck CPS 220.
1 Lecture 15: NoC Innovations Today: power and performance innovations for NoCs.
1 Lecture 22: Router Design Papers: Power-Driven Design of Router Microarchitectures in On-Chip Networks, MICRO’03, Princeton A Gracefully Degrading and.
1 Switching and Forwarding Sections Connecting More Than Two Hosts Multi-access link: Ethernet, wireless –Single physical link, shared by multiple.
1 Lecture 14: Interconnection Networks Topics: dimension vs. arity, deadlock.
COMP8330/7330/7336 Advanced Parallel and Distributed Computing Tree-Based Networks Cache Coherence Dr. Xiao Qin Auburn University
Interconnection Networks Communications Among Processors.
1 Lecture 22: Interconnection Networks Topics: Routing, deadlock, flow control, virtual channels.
COMP8330/7330/7336 Advanced Parallel and Distributed Computing Communication Costs in Parallel Machines Dr. Xiao Qin Auburn University
The network-on-chip protocol
Lecture 23: Interconnection Networks
Lecture 23: Router Design
Lecture 16: On-Chip Networks
Mechanics of Flow Control
Switching, routing, and flow control in interconnection networks
Lecture 14: Interconnection Networks
Lecture: Transactional Memory, Networks
Communication operations
Lecture: Interconnection Networks
High Performance Computing & Bioinformatics Part 2 Dr. Imad Mahgoub
Embedded Computer Architecture 5SAI0 Interconnection Networks
Lecture: Networks Topics: TM wrap-up, networks.
Lecture: Interconnection Networks
CS 6290 Many-core & Interconnect
Lecture 25: Interconnection Networks
Presentation transcript:

1 Lecture 24: Interconnection Networks Topics: communication latency, centralized and decentralized switches, routing, deadlocks (Appendix F)

2 Centralized Crossbar Switch P1 P2 P3 P4 P5 P6 P7 P0

3 Crossbar Properties Assuming each node has one input and one output, a crossbar can provide maximum bandwidth: N messages can be sent as long as there are N unique sources and N unique destinations Maximum overhead: WN 2 internal switches, where W is data width and N is number of nodes To reduce overhead, use smaller switches as building blocks – trade off overhead for lower effective bandwidth

4 Switch with Omega Network P1 P2 P3 P4 P5 P6 P7 P

5 Omega Network Properties The switch complexity is now O(N log N) Contention increases: P0  P5 and P1  P7 cannot happen concurrently (this was possible in a crossbar) To deal with contention, can increase the number of levels (redundant paths) – by mirroring the network, we can route from P0 to P5 via N intermediate nodes, while increasing complexity by a factor of 2

6 Tree Network Complexity is O(N) Can yield low latencies when communicating with neighbors Can build a fat tree by having multiple incoming and outgoing links P0P3P2P1P4P7P6P5

7 Bisection Bandwidth Split N nodes into two groups of N/2 nodes such that the bandwidth between these two groups is minimum: that is the bisection bandwidth Why is it relevant: if traffic is completely random, the probability of a message going across the two halves is ½ – if all nodes send a message, the bisection bandwidth will have to be N/2 The concept of bisection bandwidth confirms that the tree network is not suited for random traffic patterns, but for localized traffic patterns

8 Distributed Switches: Ring Each node is connected to a 3x3 switch that routes messages between the node and its two neighbors Effectively a repeated bus: multiple messages in transit Disadvantage: bisection bandwidth of 2 and N/2 hops on average

9 Distributed Switch Options Performance can be increased by throwing more hardware at the problem: fully-connected switches: every switch is connected to every other switch: N 2 wiring complexity, N 2 /4 bisection bandwidth Most commercial designs adopt a point between the two extremes (ring and fully-connected):  Grid: each node connects with its N, E, W, S neighbors  Torus: connections wrap around  Hypercube: links between nodes whose binary names differ in a single bit

10 Topology Examples Grid Hypercube Torus CriteriaBusRing2Dtorus6-cubeFully connected Performance Bisection bandwidth Cost Ports/switch Total links

11 Topology Examples Grid Hypercube Torus CriteriaBusRing2Dtorus6-cubeFully connected Performance Bisection bandwidth Cost Ports/switch Total links

12 k-ary d-cube Consider a k-ary d-cube: a d-dimension array with k elements in each dimension, there are links between elements that differ in one dimension by 1 (mod k) Number of nodes N = k d Number of switches : Switch degree : Number of links : Pins per node : Avg. routing distance: Diameter : Bisection bandwidth : Switch complexity : Should we minimize or maximize dimension?

13 k-ary d-Cube Consider a k-ary d-cube: a d-dimension array with k elements in each dimension, there are links between elements that differ in one dimension by 1 (mod k) Number of nodes N = k d Number of switches : Switch degree : Number of links : Pins per node : Avg. routing distance: Diameter : Bisection bandwidth : Switch complexity : N 2d + 1 Nd 2wd d(k-1)/2 d(k-1) 2wk d-1 Should we minimize or maximize dimension? (2d + 1) 2 (with no wraparound)

14 Routing Deterministic routing: given the source and destination, there exists a unique route Adaptive routing: a switch may alter the route in order to deal with unexpected events (faults, congestion) – more complexity in the router vs. potentially better performance Example of deterministic routing: dimension order routing: send packet along first dimension until destination co-ord (in that dimension) is reached, then next dimension, etc.

15 Deadlock Deadlock happens when there is a cycle of resource dependencies – a process holds on to a resource (A) and attempts to acquire another resource (B) – A is not relinquished until B is acquired

16 Deadlock Example Packets of message 1 Packets of message 2 Packets of message 3 Packets of message 4 4-way switch Output ports Each message is attempting to make a left turn – it must acquire an output port, while still holding on to a series of input and output ports Input ports

17 Deadlock-Free Proofs Number edges and show that all routes will traverse edges in increasing (or decreasing) order – therefore, it will be impossible to have cyclic dependencies Example: k-ary 2-d array with dimension routing: first route along x-dimension, then along y

18 Breaking Deadlock Consider the eight possible turns in a 2-d array (note that turns lead to cycles) By preventing just two turns, cycles can be eliminated Dimension-order routing disallows four turns Helps avoid deadlock even in adaptive routing West-FirstNorth-LastNegative-FirstCan allow deadlocks

19 Packets/Flits A message is broken into multiple packets (each packet has header information that allows the receiver to re-construct the original message) A packet may itself be broken into flits – flits do not contain additional headers Two packets can follow different paths to the destination Flits are always ordered and follow the same path Such an architecture allows the use of a large packet size (low header overhead) and yet allows fine-grained resource allocation on a per-flit basis

20 Flow Control The routing of a message requires allocation of various resources: the channel (or link), buffers, control state Bufferless: flits are dropped if there is contention for a link, NACKs are sent back, and the original sender has to re-transmit the packet Circuit switching: a request is first sent to reserve the channels, the request may be held at an intermediate router until the channel is available (hence, not truly bufferless), ACKs are sent back, and subsequent packets/flits are routed with little effort (good for bulk transfers)

21 Buffered Flow Control A buffer between two channels decouples the resource allocation for each channel Packet-buffer flow control: channels and buffers are allocated per packet  Store-and-forward  Cut-through Wormhole routing: same as cut-through, but buffers in each router are allocated on a per-flit basis, not per-packet Time-Space diagrams HBBBT HBBBT HBBBT Cycle Channel HBBBT HBBBT HBBBT

22 Virtual Channels Buffers Flits do not carry headers. Once a packet starts going over a channel, another packet cannot cut in (else, the receiving buffer confuse the flits of the two packets). If the packet is stalled, other packets can’t use the channel. With virtual channels, the flit can be received into one of N buffers. This allows N packets to be in transit over a given physical channel. The packet must carry an ID to indicate its virtual channel. channel Buffers Physical channel Buffers

23 Virtual Channel Flow Control Incoming flits are placed in buffers For this flit to jump to the next router, it must acquire three resources:  A free virtual channel on its intended hop  We know that a virtual channel is free when the tail flit goes through  Free buffer entries for that virtual channel  This is determined with credit or on/off management  A free cycle on the physical channel  Competition among the packets that share a physical channel

24 Title Bullet