4.1 Related Rates Greg Kelly, Hanford High School, Richland, Washington.

Slides:



Advertisements
Similar presentations
2.6 Related Rates.
Advertisements

Section 2.6: Related Rates
4.6: Related Rates. First, a review problem: Consider a sphere of radius 10cm. If the radius changes 0.1cm (a very small amount) how much does the volume.
1. Read the problem, pull out essential information and identify a formula to be used. 2. Sketch a diagram if possible. 3. Write down any known rate of.
Section 2.8 Related Rates Math 1231: Single-Variable Calculus.
A rocket launches vertically, 5 miles away from a tracking device at the same elevation as the launch site. The tracking device measures the angle of elevation.
Teresita S. Arlante Naga City Science High School.
Related Rates Objective: To find the rate of change of one quantity knowing the rate of change of another quantity.
2.7 Related Rates.
When we first started to talk about derivatives, we said that becomes when the change in x and change in y become very small. dy can be considered a very.
DERIVATIVES Related Rates In this section, we will learn: How to compute the rate of change of one quantity in terms of that of another quantity.
2.6 Related Rates. Related Rate Problems General Steps for solving a Related Rate problem Set up: Draw picture/ Label now – what values do we know.
Definition: When two or more related variables are changing with respect to time they are called related rates Section 2-6 Related Rates.
Section 2.6 Related Rates Read Guidelines For Solving Related Rates Problems on p. 150.
Related rates.
2.8 Related Rates.
Linearization , Related Rates, and Optimization
Review Problem: Use implicit differentiation to find If.
R ELATED R ATES. The Hoover Dam Oil spills from a ruptured tanker and spreads in a circular pattern. If the radius of the oil spill increases at a constant.
3.9 Related Rates 1. Example Assume that oil spilled from a ruptured tanker in a circular pattern whose radius increases at a constant rate of 2 ft/s.
Olympic National Park, Washington Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, : Related Rates.
Calculus warm-up Find. xf(x)g(x)f’(x)g’(x) For each expression below, use the table above to find the value of the derivative.
Warmup 1) 2). 4.6: Related Rates They are related (Xmas 2013)
Related Rates 3.7. Finding a rate of change that cannot be easily measured by using another rate that can be is called a Related Rate problem. Steps for.
Related Rates 5.6. First, a review problem: Consider a sphere of radius 10cm. If the radius changes 0.1cm (a very small amount) how much does the volume.
Related Rates Greg Kelly, Hanford High School, Richland, Washington.
In this section, we will investigate the question: When two variables are related, how are their rates of change related?
Section 4.6 Related Rates.
Related Rates. The chain rule and implicit differentiation can be used to find the rates of change of two or more related variables that are changing.
6.5: Related Rates Objective: To use implicit differentiation to relate the rates in which 2 things are changing, both with respect to time.
4.6: Related Rates Greg Kelly, Hanford High School, Richland, Washington.
Related Rates Section 4.6. First, a review problem: Consider a sphere of radius 10cm. If the radius changes 0.1cm (a very small amount) how much does.
1. A rocket launches vertically, 5 miles away from a tracking device at the same elevation as the launch site. The tracking device measures the angle of.
Warmup : Consider a sphere of radius 10cm. If the radius changes 0.1cm (a very small amount) how much does the volume change?
4.6: Related Rates Greg Kelly, Hanford High School, Richland, Washington.
A plane flying horizontally at an altitude of 4 mi and a speed of 475 mi/h passes directly over a radar station. Find the rate at which the distance from.
Related Rates Objective: To find the rate of change of one quantity knowing the rate of change of another quantity.
4.6: Related Rates. A square with sides x has an area If a 2 X 2 square has it’s sides increase by 0.1, use differentials to approximate how much its.
Bonaventura Francesco Cavalieri 1598 – 1647 Bonaventura Francesco Cavalieri 1598 – 1647 Bonaventura Cavalieri was an Italian mathematician who developed.
in terms of that of another quantity.
4.6: Related Rates. First, a review problem: Consider a sphere of radius 10cm. If the radius changes 0.1cm (a very small amount) how much does the.
Section 4.6 Related Rates. Consider the following problem: –A spherical balloon of radius r centimeters has a volume given by Find dV/dr when r = 1 and.
Related Rates 3.6.
3.9 Related Rates In this section, we will learn: How to compute the rate of change of one quantity in terms of that of another quantity. DIFFERENTIATION.
Examples of Questions thus far…. Related Rates Objective: To find the rate of change of one quantity knowing the rate of change of another quantity.
4.1: Related Rates Greg Kelly, Hanford High School, Richland, Washington.
Olympic National Park, Washington Greg Kelly, Hanford High School, Richland, WashingtonPhoto by Vickie Kelly, : Related Rates.
3 DERIVATIVES.
2.6: Related Rates Greg Kelly, Hanford High School, Richland, Washington.
Related Rates. We have already seen how the Chain Rule can be used to differentiate a function implicitly. Another important use of the Chain Rule is.
A plane flying horizontally at an altitude of 3 mi and a speed of 530 mi/h passes directly over a radar station. Find the rate at which the distance from.
4.6: Related Rates Created by Greg Kelly, Hanford High School, Richland, Washington Revised by Terry Luskin, Dover-Sherborn HS, Dover, Massachusetts.
Sect. 2.6 Related Rates.
4.6 Related Rates.
Related Rates Olympic National Park, Washington
Related Rates.
Chapter 3, Section 8 Related Rates Rita Korsunsky.
4.6: Related Rates Olympic National Park, Washington
Related Rates 2.7.
AP Calculus Mrs. Mongold
4.1: Related Rates Greg Kelly, Hanford High School, Richland, Washington.
4.6: Related Rates Olympic National Park, Washington
Related Rates Olympic National Park, Washington
4.6: Related Rates Greg Kelly, Hanford High School, Richland, Washington.
4.6: Related Rates Olympic National Park, Washington
2.6: Related Rates Olympic National Park, Washington.
AP Calculus AB 5.6 Related Rates.
4.6: Related Rates Olympic National Park, Washington
Related Rates and Applications
4.6: Related Rates Greg Kelly, Hanford High School, Richland, Washington.
Presentation transcript:

4.1 Related Rates Greg Kelly, Hanford High School, Richland, Washington

Steps for Related Rates Problems: 1. Draw a picture (sketch). 2. Write down known information. 3. Write down what you are looking for. 4. Write an equation to relate the variables. 5. Differentiate both sides with respect to t. 6. Evaluate.

Hot Air Balloon Problem: Given: How fast is the balloon rising? Find

First, a review problem: Consider a sphere of radius 10cm. If the radius changes 0.1cm (a very small amount) how much does the volume change? The volume would change by approximately.

Now, suppose that the radius is changing at an instantaneous rate of 0.1 cm/sec. (Possible if the sphere is a soap bubble or a balloon.) The sphere is growing at a rate of. Note: This is an exact answer, not an approximation like we got with the differential problems.

Hot Air Balloon Problem: Given: How fast is the balloon rising? Find

B A Truck Problem: Truck A travels east at 40 mi/hr. Truck B travels north at 30 mi/hr. How fast is the distance between the trucks changing 6 minutes later?

B A Truck Problem: How fast is the distance between the trucks changing 6 minutes later? Truck A travels east at 40 mi/hr. Truck B travels north at 30 mi/hr. 

Water is draining from a cylindrical tank at 3 liters/second. How fast is the surface dropping? Find ( r is a constant.) (We need a formula to relate V and h. )

Suppose that an inflating balloon is spherical in shape, and its radius is changing at the rate of 3 centimeters per second. At what rate is the volume changing when the radius is 10 centimeters?

A baseball diamond is 90 feet square, and the pitcher's mound is at the center of the square. If a pitcher throws a baseball at 100 miles per hour, how fast is the distance between the ball and first base changing as the ball crosses home plate?

A ladder 10 feet long is resting against a wall. If the bottom of the ladder is sliding away from the wall at a rate of 1 foot per second, how fast is the top of the ladder moving down when the bottom of the ladder is 8 feet from the wall?

A television camera is position 4000 ft from the base of a rocket launching pad. The angle of elevation of the camera has to change at the correct rate in order to keep the rocket in sight. Also, the mechanism for focusing the camera has to take into account the increasing distance from the camera to the rising rocket. Let’s assume the rocket rises vertically and its speed is 600 ft/s when it has risen 3000 ft. How fast is the distance from the television camera to the rocket changing at that moment? If the television camera is always kept aimed at the rocket, how fast is the camera’s angle of elevation changing at that same moment