K.U. K.U. & Leuven & Leuven 2 Computer Vision Labs Prof. Luc Van Gool ETH - Switzerland Un. Leuven – Belgium appr. 15 researchers Tracking Recognition.

Slides:



Advertisements
Similar presentations
2.3.3 MAD SAMBA (Multicamera and distributed Surveillance and multisensor-based surveillance) Contact: Alessandro ZANASI zanasi-alessandro.eu.
Advertisements

Free-viewpoint Immersive Networked Experience February 2010.
RGB-D object recognition and localization with clutter and occlusions Federico Tombari, Samuele Salti, Luigi Di Stefano Computer Vision Lab – University.
MIT AI Lab Paul Viola NTT Visit: Image Database Retrieval Variable Viewpoint Reality Professor Paul Viola Collaborators: Professor Eric Grimson, Jeremy.
TP14 - Local features: detection and description Computer Vision, FCUP, 2014 Miguel Coimbra Slides by Prof. Kristen Grauman.
Tracking Learning Detection
Robust Object Tracking via Sparsity-based Collaborative Model
A Colour Face Image Database for Benchmarking of Automatic Face Detection Algorithms Prag Sharma, Richard B. Reilly UCD DSP Research Group This work is.
Student: Yao-Sheng Wang Advisor: Prof. Sheng-Jyh Wang ARTICULATED HUMAN DETECTION 1 Department of Electronics Engineering National Chiao Tung University.
Dana Cobzas-PhD thesis Image-Based Models with Applications in Robot Navigation Dana Cobzas Supervisor: Hong Zhang.
Tracking Objects with Dynamics Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem 04/21/15 some slides from Amin Sadeghi, Lana Lazebnik,
Recent Developments in Human Motion Analysis
1 Interest Operator Lectures lecture topics –Interest points 1 (Linda) interest points, descriptors, Harris corners, correlation matching –Interest points.
Automatic Image Alignment (feature-based) : Computational Photography Alexei Efros, CMU, Fall 2005 with a lot of slides stolen from Steve Seitz and.
Automatic Face Recognition for Film Character Retrieval in Feature-Length Films Ognjen Arandjelović Andrew Zisserman.
Computational Vision Jitendra Malik University of California at Berkeley Jitendra Malik University of California at Berkeley.
1 Invariant Local Feature for Object Recognition Presented by Wyman 2/05/2006.
A Vision-Based System that Detects the Act of Smoking a Cigarette Xiaoran Zheng, University of Nevada-Reno, Dept. of Computer Science Dr. Mubarak Shah,
1 Interest Operators Find “interesting” pieces of the image Multiple possible uses –image matching stereo pairs tracking in videos creating panoramas –object.
A Brief Overview of Computer Vision Jinxiang Chai.
Final Exam Review CS485/685 Computer Vision Prof. Bebis.
Topic regards: ◆ Browsing of Search Results ◆ Video Retrieval using Spatio-Temporal ◆ Object Tracking ◆ Face tracking Yuan-Hao Lai.
Real-Time High Resolution Photogrammetry John Morris, Georgy Gimel’farb and Patrice Delmas CITR, Tamaki Campus, University of Auckland.
Reading Notes: Special Issue on Distributed Smart Cameras, Proceedings of the IEEE Mahmut Karakaya Graduate Student Electrical Engineering and Computer.
Peter Sturm INRIA Grenoble – Rhône-Alpes (Institut National de Recherche en Informatique et Automatique) An overview of multi-view stereo and other topics.
TP15 - Tracking Computer Vision, FCUP, 2013 Miguel Coimbra Slides by Prof. Kristen Grauman.
Recognition and Matching based on local invariant features Cordelia Schmid INRIA, Grenoble David Lowe Univ. of British Columbia.
Real-time object tracking using Kalman filter Siddharth Verma P.hD. Candidate Mechanical Engineering.
Visual Object Tracking Xu Yan Quantitative Imaging Laboratory 1 Xu Yan Advisor: Shishir K. Shah Quantitative Imaging Laboratory Computer Science Department.
A General Framework for Tracking Multiple People from a Moving Camera
Kourosh MESHGI Shin-ichi MAEDA Shigeyuki OBA Shin ISHII 18 MAR 2014 Integrated System Biology Lab (Ishii Lab) Graduate School of Informatics Kyoto University.
Perceptual and Sensory Augmented Computing Visual Object Recognition Tutorial Visual Object Recognition Bastian Leibe & Computer Vision Laboratory ETH.
CSCE 5013 Computer Vision Fall 2011 Prof. John Gauch
DTI Management of Information LINK Project: ICONS Incident reCOgnitioN for surveillance and Security funded by DTI, EPSRC, Home Office (March March.
Interactively Modeling with Photogrammetry Pierre Poulin Mathieu Ouimet Marie-Claude Frasson Dép. Informatique et recherche opérationnelle Université de.
Dynamic 3D Scene Analysis from a Moving Vehicle Young Ki Baik (CV Lab.) (Wed)
N n Debanga Raj Neog, Anurag Ranjan, João L. Cardoso, Dinesh K. Pai Sensorimotor Systems Lab, Department of Computer Science The University of British.
Vision-based human motion analysis: An overview Computer Vision and Image Understanding(2007)
Evaluation of Research Theme CogB. Objectives LEAR: LEArning and Recognition in vision Visual recognition and scene understanding –Particular objects.
Action and Gait Recognition From Recovered 3-D Human Joints IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS— PART B: CYBERNETICS, VOL. 40, NO. 4, AUGUST.
Tracking and event recognition – the Etiseo experience Son Tran, Nagia Ghanem, David Harwood and Larry Davis UMIACS, University of Maryland.
Efficient Visual Object Tracking with Online Nearest Neighbor Classifier Many slides adapt from Steve Gu.
CS332 Visual Processing Department of Computer Science Wellesley College CS 332 Visual Processing in Computer and Biological Vision Systems Overview of.
Rick Parent - CIS681 Motion Analysis – Human Figure Processing video to extract information of objects Motion tracking Pose reconstruction Motion and subject.
Jack Pinches INFO410 & INFO350 S INFORMATION SCIENCE Computer Vision I.
Vision Overview  Like all AI: in its infancy  Many methods which work well in specific applications  No universal solution  Classic problem: Recognition.
Team Members Ming-Chun Chang Lungisa Matshoba Steven Preston Supervisors Dr James Gain Dr Patrick Marais.
Local features: detection and description
Image features and properties. Image content representation The simplest representation of an image pattern is to list image pixels, one after the other.
A Discriminatively Trained, Multiscale, Deformable Part Model Yeong-Jun Cho Computer Vision and Pattern Recognition,2008.
Computer Vision: 3D Shape Reconstruction Use images to build 3D model of object or site 3D site model built from laser range scans collected by CMU autonomous.
Portable Camera-Based Assistive Text and Product Label Reading From Hand-Held Objects for Blind Persons.
Face Detection 蔡宇軒.
By: Suvigya Tripathi (09BEC094) Ankit V. Gupta (09BEC106) Guided By: Prof. Bhupendra Fataniya Dept. of Electronics and Communication Engineering, Nirma.
Main research interest
REAL-TIME DETECTOR FOR UNUSUAL BEHAVIOR
Digital Video Library - Jacky Ma.
TP12 - Local features: detection and description
Local features: detection and description May 11th, 2017
Wrap-up Computer Vision Spring 2018, Lecture 28
Image Based Modeling and Rendering (PI: Malik)
--- Stereoscopic Vision and Range Finders
--- Stereoscopic Vision and Range Finders
CSE 455 – Guest Lectures 3 lectures Contact Interest points 1
CMSC 426: Image Processing (Computer Vision)
Computer Graphics Lecture 15.
CS 332 Visual Processing in Computer and Biological Vision Systems
Wrap-up Computer Vision Spring 2019, Lecture 26
Recognition and Matching based on local invariant features
Presentation transcript:

K.U. K.U. & Leuven & Leuven 2 Computer Vision Labs Prof. Luc Van Gool ETH - Switzerland Un. Leuven – Belgium appr. 15 researchers Tracking Recognition Recognition Passive 3D Active 3D Hum.-comp. interact.

K.U. K.U. & Leuven & Leuven An overview of some vision trends  scene reconstruction  recognition  tracking

K.U. K.U. & Leuven & Leuven Scene reconstruction  3D acquisition with off-the-shelf HW  4D capture: dynamic 3D  Realistic texture synthesis  City modelling  Intuitive visualisation

K.U. K.U. & Leuven & Leuven One-shot ShapeCam 3D acquisition

K.U. K.U. & Leuven & Leuven 3D acquisition

K.U. K.U. & Leuven & Leuven 3D from hand-held camera images

K.U. K.U. & Leuven & Leuven... The result generated by ARC3D

K.U. K.U. & Leuven & Leuven 4D acquisition 3D snapshots in fast succession

K.U. K.U. & Leuven & Leuven Shape-from-silhouettes

K.U. K.U. & Leuven & Leuven Outdoor visual hulls

K.U. K.U. & Leuven & Leuven Realistic texturing Stochastic & hierarchical texture models Viewpoint/illumination dependent texture Minidome: portable photometric stereo

K.U. K.U. & Leuven & Leuven IKT Realistic texture Given examples Synthetic textures

K.U. K.U. & Leuven & Leuven AUTOMATIC Realistic texture

K.U. K.U. & Leuven & Leuven Recognition

K.U. K.U. & Leuven & Leuven Object recognition  Independent of viewpoint  Irrespective of occlusion  In the presence of scene clutter  Under variable illumination  Robust against deformations Latest techniques based on `invariant regions’

K.U. K.U. & Leuven & Leuven The ellipses show invariant regions, they cover the same part of the scene The crux is that they were found independently Object recognition

K.U. K.U. & Leuven & Leuven Object recognition  Example application: automatic annotation of video data  E.g. finding same object somewhere else in a complete movie Searching for the van in `groundhog day’

K.U. K.U. & Leuven & Leuven Automatic retrieval of all scenes with the van based on the example image

K.U. K.U. & Leuven & Leuven Object recognition  Next challenge: categorisation  i.e. not recognising particular objects, but rather the class an object belongs to, e.g. a car, a person, etc. This is more difficult, because of the Intra-class variability…

K.U. K.U. & Leuven & Leuven Object recognition  Next challenge: categorisation

K.U. K.U. & Leuven & Leuven Finding people  Security / surveillance / annotation e.g. pedestrian detector

K.U. K.U. & Leuven & Leuven Tracking  Robust blob tracking – anti-drift  Body pose tracking  Detailed hand tracking  Action recognition  Gait analysis

K.U. K.U. & Leuven & Leuven Multi-feature tracker

K.U. K.U. & Leuven & Leuven HandyMouse project Skin color Detection, Tracking, and Gesture analysis For Minority Report style interaction

K.U. K.U. & Leuven & Leuven Marker-less motion capture

K.U. K.U. & Leuven & Leuven Spin-offs / start-ups 1. ICOS 2. Eyetronics 3. GeoAutomation 4. eSaturnus 5. Kooaba 6. Procedural