Fan Cart
F N F NA F g
Fan Cart F N F NA F g
Fan Cart F N F NA F g
Fan Cart F N F NA F g =mg
Fan Cart F N =mg F NA F g =mg
Fan Cart F N =mg F NA =.12N F g =mg
Fan Cart F N =mg F NA =.12N F g =mg m=.550 kg
Fan Cart F N =mg F NA =.12N F g =mg Given: m=.550 kg Find a=?m/s/s FRS F=ma F = a m
Fan Cart F N =mg F NA =.12N F g =mg Given: m=.550 kg Find a=?m/s/s FRS F=ma F = a m
Fan Cart F N =mg F NA =.12N F g =mg Given: m=.550 kg Find a=?m/s/s FRS F=ma F = a m
Fan Cart F N =mg F NA =.12N F g =mg Given: m=.550 kg Find a=?m/s/s FRS F=ma F = a m
Fan Cart F N =mg F NA =.12N F g =mg Given: m=.550 kg Find a=?m/s/s FRS F=ma F = a m.12N =.55kg
Fan Cart F N =mg F NA =.12N F g =mg Given: m=.550 kg Find a=?m/s/s FRS F=ma F = a m.12N =.55kg
Fan Cart F N =mg F NA =.12N F g =mg Given: m=.550 kg Find a=?m/s/s FRS F=ma F = a m.12N =.22m/s/s.55kg
Fan Cart F N =mg F NA =.12N F g =mg Given: m=.550 kg Find a=?m/s/s FRS F=ma F = a m.12N =.15m/s/s.80kg
Cart / Falling Object
Cart / Falling Object
Cart / Falling Object
Cart / Falling Object
Cart / Falling Object
Cart / Falling Object FgFg
Cart / Falling Object F g =mg
Cart / Falling Object F g =mg FNFN
Cart / Falling Object F g =mg FNFN FTFT
Cart / Falling Object F g =mg FNFN FTFT
Cart / Falling Object F g =mg FNFN FTFT FTFT
Cart / Falling Object F g =mg FNFN FTFT FTFT Net F =ma F T =ma
Cart / Falling Object F g =mg FNFN FTFT FTFT Net F =m c a F T =m c a
Cart / Falling Object F g =mg FNFN FTFT FTFT Net F =m c a F T =m c a Net F =m f a F g -F T = m f a
Cart / Falling Object F g =mg FNFN FTFT FTFT Net F =m c a F T =m c a Net F =m f a F g -F T = m f a m f g-F T =m f a
Cart / Falling Object F g =mg FNFN FTFT FTFT Net F =m c a F T =m c a Net F =m f a F g -F T = m f a m f g-F T =m f a m f g-m c a=m f a
Cart / Falling Object F g =mg FNFN FTFT FTFT Net F =m c a F T =m c a Net F =m f a F g -F T = m f a m f g-F T =m f a m f g-m c a=m f a m f g=m f a+m c a m f g = a (m f +m c )
Cart / Falling Object F g =mg FNFN FTFT FTFT Net F =m c a F T =m c a Net F =m f a F g -F T = m f a m f g-F T =m f a m f g-m c a=m f a m f g=m f a+m c a m f g = a (m f +m c )
Cart / Falling Object F g =mg FNFN FTFT FTFT NetF X =m c a F T =m c a Net F =m f a F g -F T = m f a m f g-F T =m f a m f g-m c a=m f a m f g=m f a+m c a m f g = a (m f +m c ) Acceleration = Force due gravity on falling object divided by total mass
Cart Falling Object Lab F G – F T = m f a F T =m c a m f g-m c a=m f a m f g=m c a+m f a m f g = (m c +m f )a m f g = a Weight =a (m c +m f ) (combined mass)
Block / Falling Object
Block / Falling Object F N F T F fr F T F G F G =m b g
Block / Falling Object F N F T F fr F T F G F G =m b g
Block / Falling Object F N F T F fr F T F G F G =m b g
Block / Falling Object F N F T F fr F T F G F G =m b g
Block / Falling Object F N F T F fr F T F G =m f g F G =m b g
Block / Falling Object F N F T F fr F T F G =m f g F G =m b g
Block / Falling Object F N F T F fr F T Net F =m b a F T -F fr =m b a F G =m f g F G =m b g
Block / Falling Object F N F T F fr F T Net F =m b a F T -F fr =m b a F G =m f g F T - F N =m b a F G =m b g
Block / Falling Object F N F T F fr F T Net F =m b a F T -F fr =m b a F G =m f g F T - F N =m b a Net F =m f a F T - m b g=m b a m f g-F T =m f a m f g-m f a=F T F G =m b g
Block / Falling Object F N F T F fr F T Net F =m b a F T -F fr =m b a F G =m f g F T - F N =m b a Net F =m f a F T - m b g=m b a m f g-F T =m f a m f g-m f a=F T F G =m b g
Block / Falling Object F N F T F fr F T Net F =m b a F T -F fr =m b a F G =m f g F T - F N =m b a Net F =m f a F T - m b g=m b a m f g-F T =m f a m f g-m f a=F T F G =m b g
Block / Falling Object F N F T F fr F T Net F =m b a F T -F fr =m b a F G =m f g F T - F N =m b a Net F =m f a F T - m b g=m b a m f g-F T =m f a m f g-m f a- m b g=m b a m f g-m f a=F T F G =m b g
Block / Falling Object F N F T F fr F T Net F =m b a F T -F fr =m b a F G =m f g F T - F N =m b a Net F =m f a F T - m b g=m b a m f g-F T =m f a m f g-m f a- m b g=m b a m f g-m f a=F T m f g- m b g=m b a+m f a F G =m b g
Block / Falling Object F N F T F fr F T Net F =m b a F T -F fr =m b a F G =m f g F T - F N =m b a Net F =m f a F T - m b g=m b a m f g-F T =m f a m f g-m f a- m b g=m b a m f g-m f a=F T m f g- m b g=m b a+m f a m f g- m b g = a (m f g- m b g)=a (m f +m c ) F G =m b g
Block Falling Object F G – F T = m f a F T -F fr =m b a m f g-m b a- m b g=m f a F T = m b a+F fr F T = m b a + m b g m f g- m b g=m f a + m b a m f g – m b g = (m b +m f )a m f g- m b g = a Weight -Friction =a (m b +m f ) (combined mass)
Lab Frictionless incline
Lab Frictionless incline
Lab Frictionless incline F N F g
Lab Frictionless incline F N F gpara F gperp
Lab Frictionless incline F N = mgcos F gll =mgsin F gper = mgcos
Lab 4 Frictionless incline F gpara = mgsin ma F N = F gperp = mgcos gsin a The acceleration of a cart on a frictionless incline is dependent on the acceleration due to gravity and the sin of the incline angle. It is independent of the mass of the object.
Lab 5 Block on incline involving friction
Lab 5 Block on incline involving friction
Lab 5 Block on incline involving friction
Lab 5 Block on incline involving friction F g =mg
Lab 5 Block on incline involving friction F g =mg
Lab 5 Block on incline involving friction F g =mg FNFN
Lab 5 Block on incline involving friction F g =mg F gy FNFN
Lab 5 Block on incline involving friction F g =mg F gper FNFN
Lab 5 Block on incline involving friction F g =mg F gy FNFN F gpara
Lab 5 Block on incline involving friction F g =mg F gper FNFN F gpara
Lab 5 Block on incline involving friction F g =mg F gperp FNFN F gpara F fr
Lab 5 Block on incline involving friction F g =mg F gy FNFN F gx F fr Perpendicular
Lab 5 Block on incline involving friction F g =mg F gy FNFN F gx F fr Perpendicular Parallel
Lab 5 Block on incline involving friction F g =mg F gy FNFN F gx F fr Perpendicular Parallel mgcos
Lab 5 Block on incline involving friction F g =mg F gy FNFN F gx F fr Perpendicular Parallel mgcos mgsin
Lab 5 Block on incline involving friction F g =mg F gy FNFN F gx F fr Perpendicular Parallel mgcos mgsin mgcos
Lab 5 Block on incline involving friction F g =mg F gy FNFN F gx F fr Perpendicular Parallel mgcos mgsin mgcos F fr = F N
Lab 5 Block on incline involving friction F g =mg F gy FNFN F gx F fr Perpendicular Parallel mgcos mgsin mgcos F fr = F N mgcos
Lab 5 Block on incline involving friction F g =mg F gy FNFN F gx F fr Perpendicular Parallel mgcos mgsin mgcos F fr = F N mgcos mgcos =mgcos
Lab 5 Block on incline involving friction F g =mg F gy FNFN F gx F fr Perpendicular Parallel mgcos mgsin mgcos f F gx = Static Friction mgcos F fr = F N mgcos mgcos =mgcos
Lab 5 Block on incline involving friction F g =mg F gy FNFN F gx F fr Perpendicular Parallel mgcos mgsin mgcos f F gx = Static Friction mgcos F fr = F N mgcos mgcos =mgcos If F gx > Static Friction mgsin - mgcos =ma
Lab 5 Block on incline involving friction F g =mg F gy FNFN F gx F fr Perpendicular Parallel mgcos mgsin mgcos f F gx = Static Friction mgcos F fr = F N mgcos mgcos =mgcos If F gx > Static Friction mgsin - mgcos =ma
Lab 5 Block on incline involving friction Net F = Perpendicular to incline
Lab 5 Block on incline involving friction Net F = 0 Perpendicular to incline
Lab 5 Block on incline involving friction Net F = 0 Perpendicular to incline F gy =F N = mgcos
Lab 5 Block on incline involving friction F y = 0 Perpendicular to incline F perp =FN = mgcos
Lab 5 Block on incline involving friction F y = 0 Perpendicular to incline F perp =FN = mgcos
Lab 5 Block on incline involving friction Fnet = 0 Perpendicular to incline F perp =F N = mgcos F x = ____ if Force due to gravity parallel to incline equals static friction.
Lab 5 Block on incline involving friction F net = 0 Perpendicular to incline F perp =F N = mgcos F Net = 0 if Force due to gravity parallel to incline equals static friction.
Lab 5 Block on incline involving friction F net = 0 Perpendicular to incline F perp =F N = mgcos F Net = 0 if Force due to gravity parallel to incline equals static friction. F parallel =
Lab 5 Block on incline involving friction F net = 0 Perpendicular to incline F perp =F N = mgcos F Net = 0 if Force due to gravity parallel to incline equals static friction. F parallel = F fr
Lab 5 Block on incline involving friction F net = 0 Perpendicular to incline F perp =F N = mgcos F Net = 0 if Force due to gravity parallel to incline equals static friction. F parallel = F fr mgsin == mgcos sin = cos sin = tan cos
Lab 5 Block on incline involving friction F net = 0 Perpendicular to incline F perp =F N = mgcos F Net = 0 if Force due to gravity parallel to incline equals static friction. F parallel = F fr mgsin == mgcos sin = cos sin = tan cos
Lab 5 Block on incline involving friction F net = 0 Perpendicular to incline F perp =F N = mgcos F Net = 0 if Force due to gravity parallel to incline equals static friction. F parallel = F fr mgsin == mgcos sin = cos sin = tan cos
Lab 5 Block on incline involving friction F net = 0 Perpendicular to incline F perp =F N = mgcos F Net = 0 if Force due to gravity parallel to incline equals static friction. F parallel = F fr mgsin == mgcos sin = cos sin = tan cos
Lab 5 Block on incline involving friction F net = 0 Perpendicular to incline F perp =F N = mgcos F Net = 0 if Force due to gravity parallel to incline equals static friction. F parallel = F fr mgsin == mgcos sin = cos sin = tan cos
Lab 5 Block on incline involving friction F net = 0 Perpendicular to incline F perp =F N = mgcos F net = if Force due to gravity parallel greater than incline friction F gparallel - F fr = ma mgsin – mgcos ma gsin – cos a
Lab 5 Block on incline involving friction F net = 0 Perpendicular to incline F perp =F N = mgcos F net = if Force due to gravity parallel greater than incline friction F gparallel - F fr = ma mgsin – mgcos ma gsin – cos a
Lab 5 Block on incline involving friction F net = 0 Perpendicular to incline F perp =F N = mgcos F net = if Force due to gravity parallel greater than incline friction F gparallel - F fr = ma mgsin – mgcos ma gsin – cos a
Lab 5 Block on incline involving friction F net = 0 Perpendicular to incline F perp =F N = mgcos F net = if Force due to gravity parallel greater than incline friction F gparallel - F fr = ma mgsin – mgcos ma gsin – cos a
Lab 5 Block on incline involving friction F net = 0 Perpendicular to incline F perp =F N = mgcos F net = ma if Force due to gravity parallel greater than incline friction F gparallel - F fr = ma mgsin – mgcos ma gsin – cos a
Lab 5 Block on incline involving friction F net = 0 Perpendicular to incline F perp =F N = mgcos F net = ma if Force due to gravity parallel greater than incline friction F gparallel - F fr = ma mgsin – mgcos ma gsin – cos a
Lab 5 Block on incline involving friction F net = 0 Perpendicular to incline F perp =F N = mgcos F net = ma if Force due to gravity parallel greater than incline friction F gparallel - F fr = ma mgsin – mgcos ma gsin – cos a
Lab 5 Block on incline involving friction F net = 0 Perpendicular to incline F perp =F N = mgcos F net = ma if Force due to gravity parallel greater than incline friction F gparallel - F fr = ma mgsin – mgcos ma gsin – cos a
Lab 5 Block on incline involving friction F net = 0 Perpendicular to incline F perp =F N = mgcos F net = ma if Force due to gravity parallel greater than incline friction F gparallel - F fr = ma mgsin – mgcos ma gsin – cos a
Lab 5 Block on incline involving friction F net = 0 Perpendicular to incline F perp =F N = mgcos F net = ma if Force due to gravity parallel greater than incline friction F gparallel - F fr = ma mgsin – mgcos ma gsin – cos a
Lab 5 incline involving friction Force down – Friction = Net force mgsin mgcos ma gsin - - gcos = a The acceleration of a cart incline is dependent on the acceleration due to gravity and angle of the incline and the coeffiecient of friction but not the mass of the object.
Lab 5 incline involving friction Force down – Friction = Net force mgsin mgcos ma gsin - - gcos = a The acceleration of a cart incline is dependent on the acceleration due to gravity and angle of the incline and the coeffiecient of friction but not the mass of the object.
F net = F g heavy - F glight (m H +m L )a = m H g-m L g
F net = F g heavy - F glight (m H +m L ) a = m H g-m L g a = (m H g-m L g) (m H +m L )
Atwoods Pulley F net = F g heavy - F glight (m H +m L ) a = m H g-m L g a = (m H g-m L g) (m H +m L ) a = (Weight H – Weight L) ( total mass )
Atwoods Pulley F net = F g heavy - F glight (m H +m L ) a = m H g-m L g a = (m H g-m L g) (m H +m L ) a = (Weight H – Weight L) ( total mass )
Block on Incline Falling Mass
mg
Block on Incline Falling Mass mg mgsinf
Block on Incline Falling Mass mg mgsin
Block on Incline Falling Mass mg mgsin mgcos
Block on Incline Falling Mass mg mgsin mgcos FTFT
Block on Incline Falling Mass mg mgsin mgcos FTFT mg
Block on Incline Falling Mass mg mgsin mgcos FTFT mfgmfg FTFT
Block on Incline Falling Mass mg mgsin mgcos FTFT mfgmfg FTFT mfgmfg
Block on Incline Falling Mass mg mgsin mgcos FTFT mfgmfg FTFT m f g - mgsin
Block on Incline Falling Mass mg mgsin mgcos FTFT mfgmfg FTFT m f g – mgsin mgcos
Block on Incline Falling Mass mg mgsin mgcos FTFT mfgmfg FTFT m f g – mgsin mgcos m m f a
Block on Incline Falling Mass mg mgsin mgcos FTFT mfgmfg FTFT m f g – mgsin mgcos m m f a Weight of Falling
Block on Incline Falling Mass mg mgsin mgcos FTFT mfgmfg FTFT m f g – mgsin mgcos m m f a Weight of Falling - Force parallel
Block on Incline Falling Mass mg mgsin mgcos FTFT mfgmfg FTFT m f g – mgsin mgcos m m f a Weight of Falling - Force parallel – Friction
Block on Incline Falling Mass mg mgsin mgcos FTFT mfgmfg FTFT m f g – mgsin mgcos m m f a Weight of Falling - Force parallel – Friction = Net Force
Block on Incline Falling Mass mg mgsin mgcos FTFT mfgmfg FTFT m f g – mgsin mgcos m m f a m f g – mgsin mgcos a m m f Weight of Falling - Force parallel – Friction = Net Force