CHAPTER 4 The Laws of Motion Newton’s First Law: Newton’s First Law: An object at rest remains at rest and an object in motion continues in motion with.

Slides:



Advertisements
Similar presentations
FORCE A force is any influence that can change the velocity of a body. Forces can act either through the physical contact of two objects (contact forces:
Advertisements

Chapter 4 The Laws of Motion.
Chapter 4 Forces in One Dimension
Make a sketch Problem: A 10.0 kg box is pulled along a horizontal surface by a rope that makes a 30.0 o angle with the horizontal. The tension in the rope.
Net Force Problems There are 2 basic types of net force problems
PHYS 218 sec Review Chap. 4 Newton’s laws of motion.
Kinematics – the study of how things move
Chapter 4- Forces and Motion
Newton’s Laws of Motion. HFinks '072 6/2/2015 Basic Concepts  Force – push or pull on an object - Vector quantity  Mass – amount of matter in a body.
Chapter 5: The laws of motion
Chapter 4 The Laws of Motion. Forces Usually think of a force as a push or pull Usually think of a force as a push or pull Vector quantity Vector quantity.
CH4: Forces and Newton's Laws of Motion Concepts of force, mass, and weight. Newton’s laws of motion. Newton’s law of gravitation. Friction: kinetic and.
Forces and The Laws of Motion
Forces and Newton’s Laws of Motion
Motion & Force: Dynamics Physics 11. Galileo’s Inertia  Galileo attempted to explain inertia based upon rolling a ball down a ramp  Predict what would.
Chapter 4 Preview Objectives Force Force Diagrams
Chapter 4 Section 1 Changes in Motion Force.
Chapter 4 Forces and the Laws of Motion. Chapter Objectives Define force Identify different classes of forces Free Body Diagrams Newton’s Laws of Motion.
Kinematics – the study of how things move Dynamics – the study of why things move Forces (the push or pull on an object) cause things to move Aristotle.
Chapter 4 Preview Objectives Force Force Diagrams
Physics Chp4.
NEWTON’S FIRST LAW Definition- An object at rest will remain at rest, or if it is moving, it will continue to move with constant velocity, unless acted.
FORCES AND LAWS OF MOTION. FORCE (push) (pull) Examples of forces: ContactField Pulling the handle of the door Pushing a stroller Hitting a tennis ball.
Chapter 4 Changes in Motion Objectives
Forces in One Dimension: Force and Motion 4.1
© Houghton Mifflin Harcourt Publishing Company The student is expected to: Chapter 4 Section 1 Changes in Motion TEKS 4E develop and interpret free-body.
Forces and the Laws of Motion Chapter Changes in Motion Objectives  Describe how force affects the motion of an object  Interpret and construct.
CHAPTER 4 The Laws of Motion Newton’s First Law: Newton’s First Law: An object at rest remains at rest and an object in motion continues in motion with.
FORCES AND LAWS OF MOTION. FORCE EXAMPLES OF FORCES: Close rangeLong Range Pulling the handle of the door Pushing a stroller Hitting a tennis ball with.
SECOND LAW OF MOTION If there is a net force acting on an object, the object will have an acceleration and the object’s velocity will change. Newton's.
Chapter 4 Forces and the Laws of Motion. Newton’s First Law An object at rest remains at rest, and an object in motion continues in motion with constant.
Chapter 4 Dynamics: Newton’s Laws of Motion
 Isaac Newton  Smart Guy  Liked Apples  Invented Calculus  Came up with 3 laws of motion  Named stuff after himself.
What is a Force? A force is a push or a pull causing a change in velocity or causing deformation.
Vectors and Linear Motion. Vector Quantities: Have a magnitude And direction ex: meters, velocity, acceleration Scalar Quantities: Have only a magnitude.
Notes Force. Force is a push or pull exerted on some object. Forces cause changes in velocity. The SI unit for force is the Newton. 1 Newton = 1 kg m/s.
Force and Motion This week – This week – Force and Motion – Chapter 4 Force and Motion – Chapter 4.
Chapter 4 Forces in One Dimension. 4.1 Force and Motion Force – A push or a pull exerted on an object. May cause a change in velocity:  Speed up  Slow.
Force & Newton’s Laws of Motion. FORCE Act of pulling or pushing Act of pulling or pushing Vector quantity that causes an acceleration when unbalanced.
Newton 2nd Law problems - Atwood Machines -Incline Planes -Tension Problems -Other Object Connected problems.
Remember!!!! Force Vocabulary is due tomorrow
The Laws of Motion. Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting on them Describes.
Advanced Physics Chapter 4 Motion and Force: Dynamics.
Friction Ffriction = μFNormal.
Newton’s Second Law of Motion – Force & Acceleration
Ch 4 – Forces and the Laws of Motion. What is a force? A force is a push or pull A force causing a change in velocity –An object from rest starts moving.
Friction. Biblical Reference And they pulled him up with the ropes and lifted him out of the cistern. Jeremiah 38:13.
Lecture 7: Forces & The Laws of Motion
Dynamics!.
Forces What is a Force? A force is any push or pull on an object A force does NOT always require contact –Gravity –Electrostatic –Magnetism.
Forces and the Laws of Motion
Physics The Five Force Equation Presented by Denise Jenke.
Basic Information: Force: A push or pull on an object Forces can cause an object to: Speed up Slow down Change direction Basically, Forces can cause an.
© Houghton Mifflin Harcourt Publishing Company Preview Objectives Force Force Diagrams Chapter 4 Section 1 Changes in Motion.
Push and Pull Newton’s Laws. Newton’s First Law An object at rest remains at rest, and an object in motion continues in motion with constant velocity.
Forces and the Laws of Motion Chapter 4. Forces and the Laws of Motion 4.1 Changes in Motion –Forces are pushes or pullss can cause acceleration. are.
REVISION NEWTON’S LAW. Quantity with magnitude and direction. e.g. displacement, velocity, acceleration, force and weight.. VECTOR Quantity having only.
Forces in Equilibrium & Motion along an Incline Chapter 7.1.
Chapter 4 Dynamics: Newton’s Laws of Motion. Units of Chapter 4 Force Newton’s First Law of Motion Mass Newton’s Second Law of Motion Newton’s Third Law.
Physics Section 4.4 Describe various types of forces Weight is a measure of the gravitational force exerted on an object. It depends upon the objects.
AP Chapter 4. Force - a push or pull Contact Force – Noncontact Force – mass.
Inclined Plane Problems. Axes for Inclined Planes X axis is parallel to the inclined plane Y axis is perpendicular to the inclined plane Friction force.
Physics Section 4.4 Describe various types of forces Weight is a measure of the gravitational force exerted on an object. It depends upon the objects.
1 Physics: Chapter 4 Forces & the Laws of Motion Topics:4-1 Changes in Motion 4-2 Newton’s First Law 4-3 Newton’s Second & Third Laws 4-4 Everyday Forces.
The “Spring Force” If an object is attached to a spring and then pulled or pushed, the spring will exert a force that is proportional to the displacement.
The Laws of Motion. Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting on them Describes.
Chapter 4 Newton’s Laws.
Forces and Newton’s Laws of Motion
Forces and Newton’s Laws of Motion
Presentation transcript:

CHAPTER 4 The Laws of Motion Newton’s First Law: Newton’s First Law: An object at rest remains at rest and an object in motion continues in motion with constant velocity (constant speed in straight line) unless acted on by a net external force. “in motion” or “at rest” “at rest” – with respect to the chosen frame of reference “net force” “net force” – vector sum of all the external forces acting on the object – F Net,x and F Net,y calculated separately Forces: Forces:Contact Forces *Applied Forces (push or pull) *Normal Force (supporting force) *Frictional Force (opposes motion) Field Forces *Gravitational ·Magnetic ·Electrostatic *The typical four forces analyzed in our study of classical mechanics

Newton’s Second Law: Newton’s Second Law:The acceleration of an object is directly proportional to the net force acting on it F Net = ma Mass – The measurement of inertia (“inertial mass”) Inertia – The tendency of an object to resist any attempt to change its motion Book Example: 1.Strike golf ball w/golf club 2.Strike bowling ball w/golf club Which has greatest inertia? Which has greatest mass? Dimensional Analysis F = ma = kg x m/s 2 = newton = N 1 newton = 1 kg · m/s 2

Weight and the Gravitational Force Mass Mass – an amount of matter (“gravitational mass”) “Your mass on the Moon equals your mass on Earth.” Weight Weight – the magnitude of the force of gravity acting on an amount of matter F = ma F g = mg w = mg NOTE: Your text treats weight (w) as a scalar rather than as a vector. Example Your mass is 80kg. What is your weight? w = 80kg · 9.8m/s 2 w = 780 kg·m/s 2 w = 780 N

Newton’s Third Law: Newton’s Third Law:If two objects interact, the force exerted on object 1 by object 2 is equal in magnitude but opposite in direction to the force exerted on object 2 by object 1 Example: Example: (Contact Force) Book Table Book pushes down on table with force of 9.8.N Table pushes up on book with force of 9.8.N Net Force on book =9.8N – 9.8N = 0N Hence, book does not accelerate up or down. Example: Example: (Field Force) Earth F Moon Moon F Earth Earth pulls on Moon equal to the force the Moon pulls on Earth.

Problem Solving Strategy Remember: We are working now with only 4 forces. Applied Force F a Normal ForceF N Frictional ForceF f Gravitational Force F g Draw a Sketch FNFN FaFa FgFg FfFf Determine the Magnitude of Forces in “x” and in “y” Direction F N often equals F g (object does not accelerate up off surface or accelerate downward through surface) F Net,y = F N – F g = 0 N F Net,x = F a – F f = ma F f < F a Label forces on Sketch Solve Problem

Example 1: Example 1: Sliding “Box” Problem (Horizontal F a ) “Box” = hockey puck = shopping cart = tire = dead cat = etc. A 55 kg shopping cart is pulled horizontally with a force of 25N. The frictional force opposing the motion is 15N. How fast does the cart accelerate? F a =25N F N =540N F g =540N F f =15N F a = 25N F f = 15N F Net,x = 25N – 15N = ma = 10.N = 55kg·a a =.18m/s 2 F g = mg = 55kg · 9.8m/s 2 = 540N F N = F g = 540N

Friction Friction opposes motion. Kinetic Friction opposes motion of a moving object. Static Friction opposes motion of a stationary object. F f =  F N  static = coefficient of static friction  kinetic = coefficient of kinetic friction  s >  k Why? Static condition: peaks and valleys of the two surfaces overlap each other. Kinetic Condition: surfaces slide over each other touching only at their peaks  s >  k  F f,s > F f,k Applied Physics Example: Anti-lock Brakes

Example 2: Example 2: Sliding “Box” Problem (Pulled at an Angle) A dead cat with a mass of 7.5kg is pulled off the road by a passing motorist. The motorist pulls the cat by its tail which is at an angle of 37° to the horizontal. A force of 25N is applied. The force of friction opposing motion is 18N. How fast does the cat accelerate? m = 7.5kg F a = 25N F a,x = F a cos37 = 20.N F a,y = F a sin 37 = 15N F f = 18N F Net,x = F a,x – F f = ma 20.N – 18N = 7.5kg · a a =.27m/s 2 F N + F a,y = F g (up forces equal down forces) F g = mg = 74N F N = 74N – 15N F N = 59N =74N =15N =20N 59N= 18N= F a,x F a,y FNFN FgFg FfFf FaFa =25N

Forces on an Inclined Plane F g is always directed straight down. We then choose a Frame of Reference where the x-axis is parallel to the incline and the y-axis perpendicular to the incline. F g,x = F g sin  F g,y = F g cos  F N = F g,y (in opposite direction) F a and F f will be along our new x-axis  = 30°  FgFg F gy F gx x y

Example Problem Example Problem (Inclined Plane) A 25.0kg box is being pulled up a 30° incline with a force of 245N. The coefficient of kinetic friction between the box and the surface is.567. Calculate the acceleration of the box. Draw a Sketch F g · sin  = 245N · sin30 = 123N (to left along x-axis) Label Forces on your sketch Solve the Problem  k F N =.567 · 212N = 120N (to left along x-axis) Determine the Magnitude of the forces in x and y directions  = 30°  FgFg F gy F gx xy m = F g = F g,x = F g,y = mg = 25.0kg · 9.80m/s 2 = 245N (down) 25.0 kg F g · cos  = 245N · cos30 = 212N (down along y-axis) F a = F N = F f = 245N (to right along x-axis) F g cos  = 212N (up along y-axis)

Solve the Problem F a – F f – F g,x = 245N – 120.N – 123N = 2N F Net,x = ma x 2N = 25.0kg · a x a x =.08 m/s 2 NOTE: The box may be moving up the incline at any velocity. However, at the specified conditions it will be accelerating. F Net,x =