Introduction instanton molecules and topological susceptibility Random matrix model Chiral condensate and Dirac spectrum A modified model and Topological.

Slides:



Advertisements
Similar presentations
Lecture 1: basics of lattice QCD Peter Petreczky Lattice regularization and gauge symmetry : Wilson gauge action, fermion doubling Different fermion formulations.
Advertisements

A method of finding the critical point in finite density QCD
Lattice Quantum Chromodynamic for Mathematicians Richard C. Brower Yale University May Day 2007 Tutorial in “ Derivatives, Finite Differences and.
The QCD equation of state for two flavor QCD at non-zero chemical potential Shinji Ejiri (University of Tokyo) Collaborators: C. Allton, S. Hands (Swansea),
第十届 QCD 相变与相对论重离子物理研讨会, August Z. Zhang,
Axial symmetry at finite temperature Guido Cossu High Energy Accelerator Research Organization – KEK Lattice Field Theory on multi-PFLOPS computers German-Japanese.
Su Houng Lee Theme: 1.Will U A (1) symmetry breaking effects remain at high T/  2.Relation between Quark condensate and the ’ mass Ref: SHL, T. Hatsuda,
A Chiral Random Matrix Model for 2+1 Flavor QCD at Finite Temperature and Density Takashi Sano (University of Tokyo, Komaba), with H. Fujii, and M. Ohtani.
1 A Model Study on Meson Spectrum and Chiral Symmetry Transition Da
1 Chiral Symmetry Breaking and Restoration in QCD Da Huang Institute of Theoretical Physics, Chinese Academy of
O(N) linear and nonlinear sigma-model at nonzeroT within the auxiliary field method CJT study of the O(N) linear and nonlinear sigma-model at nonzeroT.
Strong Magnetic Fields in QCD Lattice Calculations P.V.Buividovich ( ITEP, JINR ) ‏, M.N.Chernodub (LMPT, Tours University, ITEP) ‏, E.V.Luschevskaya (ITEP,
Naoki Yamamoto (Univ. of Tokyo) Tetsuo Hatsuda (Univ. of Tokyo) Motoi Tachibana (Saga Univ.) Gordon Baym (Univ. of Illinois) Phys. Rev. Lett. 97 (2006)
Towards θvacuum simulation in lattice QCD Hidenori Fukaya YITP, Kyoto Univ. Collaboration with S.Hashimoto (KEK), T.Hirohashi (Kyoto Univ.), K.Ogawa(Sokendai),
N F = 3 Critical Point from Canonical Ensemble χ QCD Collaboration: A. Li, A. Alexandru, KFL, and X.F. Meng Finite Density Algorithm with Canonical Approach.
Study of the critical point in lattice QCD at high temperature and density Shinji Ejiri (Brookhaven National Laboratory) arXiv: [hep-lat] Lattice.
The XXV International Symposium on Lattice Field Theory 29 July - 5 August 2007, Regensburg, Deutschland K. Miura, N. Kawamoto and A. Ohnishi Hokkaido.
Fluctuations and Correlations of Conserved Charges in QCD at Finite Temperature with Effective Models Wei-jie Fu, ITP, CAS Collaborated with Prof. Yu-xin.
Chiral Magnetic Effect on the Lattice Komaba, June 13, 2012 Arata Yamamoto (RIKEN) AY, Phys. Rev. Lett. 107, (2011) AY, Phys. Rev. D 84,
INSTANTON AND ITS APPLICATION Nam, Seung-il Yukawa Institute for Theoretical Physics (YITP), Kyoto University, Japan YITP, Kyoto University YITP Lunch.
Finite Density with Canonical Ensemble and the Sign Problem Finite Density Algorithm with Canonical Ensemble Approach Finite Density Algorithm with Canonical.
A direct relation between confinement and chiral symmetry breaking in temporally odd-number lattice QCD Lattice 2013 July 29, 2013, Mainz Takahiro Doi.
Exact Results for perturbative partition functions of theories with SU(2|4) symmetry Shinji Shimasaki (Kyoto University) JHEP1302, 148 (2013) (arXiv: [hep-th])
Higgs Mechanism at Finite Chemical Potential with Type-II Nambu-Goldstone Boson Based on arXiv: v2 [hep-ph] Yusuke Hama (Univ. Tokyo) Tetsuo Hatsuda.
Yusuke Hama (Univ. Tokyo) Collaborators Tetsuo Hatsuda (Univ. Tokyo)
Imaginary Chemical potential and Determination of QCD phase diagram
Lianyi He and Pengfei Zhuang Physics Department, Tsinghua U.
Lattice Fermion with Chiral Chemical Potential NTFL workshop, Feb. 17, 2012 Arata Yamamoto (University of Tokyo) AY, Phys. Rev. Lett. 107, (2011)
Finite N Index and Angular Momentum Bound from Gravity “KEK Theory Workshop 2007” Yu Nakayama, 13 th. Mar (University of Tokyo) Based on hep-th/
Su Houng Lee Theme: 1.Will U A (1) symmetry breaking effects remain at high T 2.Relation between Quark condensate and the ’ mass Ref: SHL, T. Hatsuda,
Su Houng Lee Theme: Relation between Quark condensate and the ’ mass Ref: SHL, T. Hatsuda, PRD 54, R1871 (1996) Y. Kwon, SHL, K. Morita, G. Wolf, PRD86,
Topology conserving actions and the overlap Dirac operator (hep-lat/ ) Hidenori Fukaya Yukawa Institute, Kyoto Univ. Collaboration with S.Hashimoto.
Condensates and topology fixing action Hidenori Fukaya YITP, Kyoto Univ. Collaboration with T.Onogi (YITP) hep-lat/
Lattice studies of topologically nontrivial non-Abelian gauge field configurations in an external magnetic field in an external magnetic field P. V. Buividovich.
Instanton-induced contributions to hadronic form factors. Pietro Faccioli Universita’ degli Studi di Trento, I.N.F.N., Gruppo Collegato di Trento, E.C.T.*
Instanton vacuum at finite density Hyun-Chul Kim Department of Physics Inha University S.i.N. and H.-Ch.Kim, Phys. Rev. D 77, (2008) S.i.N., H.Y.Ryu,
1 Approaching the chiral limit in lattice QCD Hidenori Fukaya (RIKEN Wako) for JLQCD collaboration Ph.D. thesis [hep-lat/ ], JLQCD collaboration,Phys.Rev.D74:094505(2006)[hep-
1 Color Superconductivity: CFL and 2SC phases  Introduction  Hierarchies of effective lagrangians  Effective theory at the Fermi surface (HDET)  Symmetries.
HIM, Feb. 23, 2009 Pion properties from the instanton vacuum in free space and at finite density Hyun-Chul Kim Department of Physics, Inha University.
Wilson PRD10, 2445 (1974); Ginsparg Wilson PRD25, 2649 (1982); Neuberger PLB417, 141 (1998), Hasenfratz laliena Niedermayer PLB427, 125 (1998) Criterion.
Naoki Yamamoto (University of Tokyo) 高密度 QCD における カイラル対称性 contents Introduction: color superconductivity The role of U(1) A anomaly and chiral symmetry.
CPOD2011 , Wuhan, China 1 Isospin Matter Pengfei Zhuang Tsinghua University, Beijing ● Phase Diagram at finite μ I ● BCS-BEC Crossover in pion superfluid.
Modification of nucleon spectral function in the nuclear medium from QCD sum rules Collaborators: Philipp Gubler(ECT*), Makoto Oka Tokyo Institute of Technology.
Lattice QCD at finite density
Lattice gauge theory treatment of Dirac semimetals at strong coupling Yasufumi Araki 1,2 1 Institute for Materials Research, Tohoku Univ. 2 Frontier Research.
高密度クォーク物質における カイラル凝縮とカラー超伝導の競 合 M. Kitazawa,T. Koide,Y. Nemoto and T.K. Prog. of Theor. Phys., 108, 929(2002) 国広 悌二 ( 京大基研) 東大特別講義 2005 年 12 月 5-7 日 Ref.
NTNU, April 2013 with collaborators: Salman A. Silotri (NCTU), Chung-Hou Chung (NCTU, NCTS) Sung Po Chao Helical edge states transport through a quantum.
1 NJL model at finite temperature and chemical potential in dimensional regularization T. Fujihara, T. Inagaki, D. Kimura : Hiroshima Univ.. Alexander.
Deconfinement and chiral transition in finite temperature lattice QCD Péter Petreczky Deconfinement and chiral symmetry restoration are expected to happen.
複素ランジュバン法におけるゲージ・クーリングの 一般化とその応用 西村 淳 ( KEK 理論センター、総研大) 「離散的手法による場と時空のダイナミクス」研究会 2015 9月15日(火)@岡山 Ref.) J.N.-Shimasaki: arXiv: [hep-lat], Phys.Rev.
Syo Kamata Rikkyo University In collaboration with Hidekazu Tanaka.
Matter-antimatter coexistence method for finite density QCD
Study of the structure of the QCD vacuum
Nc=2 lattice gauge theories with
Speaker: Takahiro Doi (Kyoto University)
NGB and their parameters
Study of Aoki phase in Nc=2 gauge theories
Strangeness and charm in hadrons and dense matter, YITP, May 15, 2017
Color Superconductivity: CFL and 2SC phases
Spontaneous P-parity breaking in QCD at large chemical potentials
quark angular momentum in lattice QCD
Chengfu Mu, Peking University
Pavel Buividovich (Regensburg University)
Jun Nishimura (KEK, SOKENDAI) JLQCD Collaboration:
Topological susceptibility at finite temperature
Current Status of Exact Supersymmetry on the Lattice
Top meets Topology C.T. Hill, Fermilab.
A possible approach to the CEP location
EoS in 2+1 flavor QCD with improved Wilson fermion
The half-filled Landau level: The case for Dirac composite fermions
Presentation transcript:

Introduction instanton molecules and topological susceptibility Random matrix model Chiral condensate and Dirac spectrum A modified model and Topological susceptibility Summary Topological susceptibility at finite temperature in a random matrix model Chiral 07, 14 RCNP Munehisa Ohtani (Univ. Regensburg) with C. Lehner, T. Wettig (Univ. Regensburg) T. Hatsuda (Univ. of Tokyo)

Introduction _ Banks-Casher rel:     =  (0) where  ( ) = 1 / V  (  n ) =  1 /  Im Tr(  D+i  )  1  E.-M.Ilgenfritz & E.V.Shuryak PLB325(1994)263  Chiral symmetry breaking and instanton molecules _ _      : chiral restoration # of I-I  : Formation of instanton molecules ? ? Index Theorem:  1  tr FF = N +  N  ~ 32  2  0 mode of +(  ) chirality associated with an isolated (anti-) instanton quasi 0 modes begin to have a non-zero eigenvalue  (0) becomes sparse

Instanton molecules &Topological susceptibility topological charge density q(x) q(x)2q(x)2 isolated (anti-)instantons at low T  d 4 x q(x) 2 decreases as T   d 4 x q(x) 2  1 / V  d 4 yd 4 x(q(x) 2  q(y) 2 ) / 2  1 / V  d 4 yd 4 x q(x)q(y) = Q 2 /V The formation of instanton molecules suggests decreasing topological susceptibility as T  (anti-)instanton molecule at high T q(x)2q(x)2

 Random matrix model at T  0 Chiral restoration and Topological susceptibility  A.D.Jackson & J.J.M.Verbaarschot, PRD53(1996) Chiral symmetry: {D E,  5 } = 0 Hermiticity: D E † = D E Random matrix model Z QCD =   det(iD E + m f )  YM / / // f  0  T The lowest Matsubara freq. quasi 0 mode basis, i.e. topological charge: Q = N +  N  with iD RM = 0 iW iW † 0 W  C N  × N + Z RM =  e  Q 2 /2N   D W e  N/2  2 trW † W  det(iD RM + m f ) Q f |

Hubbard Stratonovitch transformation  T.Wettig, A.Schäfer, H.A.Weidenmüller, PLB367(1996) 1) Z RM rewritten with fermions   integrate out random matrix W Action with 4-fermi int. 3) introduce auxiliary random matrix S  C N f × N f  integrate out  dim. of matrix N  N +  N  (  V) plays a role of “1/ h ” The saddle point eqs. for S, Q/N become exact in the thermodynamic limit. Z RM =  e  Q 2 /2N   D S e  N /2  2 trS † S det S + m i  T (N  |Q|)/2 det(S + m) |Q|  Q i  T S † + m |

Chiral condensate _      =  m lnZ RM /VN f = 1 N tr S 0 + m i  T  1 where S 0 : saddle pt. value VN f i  T S 0 † + m _ _    /     0 T / T c m m  The 2 nd order transition in the chiral limit ( Q = 0 at the saddle pt. )

 ( ) T / T c  Eigenvalue distribution of Dirac operator _  ( ) = 1 / V  ( n ) =  1 /  Im Tr( D+i  )  1 = 1 /  Re      | m   i _    =  m lnZ /VN f = Tr( iD+m  )  1 ((  (0) becomes sparse as T  instanton molecule ?

 T/TcT/Tc as N      Q 2  = 1 1 N 2  Suppression of topological susceptibility  ln Z(Q)/Z(0) =  Q 2 / N  Q 4 / N 3   |Q|  Q 2 / N  Q 3 / N 2  Expansion by Q / N : × 1 1  0 (as N   ) 2 N sinh  /2 in RMM  for  m m  Q / NQ / N  ln Z(Q)/Z(0) Q / NQ / N m m   Unphysical suppression of  at T  in RMM

Leutwyler-Smilga model and Random Matrix Using singular value decomposition of S + m  V  1 U  V, Z RM is rewritten with the part. func. Z L-S of chiral eff. theory for 0-momentum Goldstone modes Z RM (Q) = N Q  D  Z L-S (Q,  ) e  N/2  2 tr  2 det(  2 +  2 T 2 ) N/2 det(  2 +  2 T 2 ) |Q|/2 det  |Q| Z L-S (Q,  ) =  D U e  N  2 trRe m  U  Q 2 /2N  detU Q  H.Leutwyler, A.Smilga, PRD46(1992) This factor suppresses   We claim to tune N Q so as to cancel the factor at the saddle point.

Modified Random Matrix model Z mRM =   D  Z L-S (Q,  ) e  N/2  2 tr  2 det(  2 +  2 T 2 ) N/2 Q We propose a modified model: where _      in the conventional model is reproduced. cancelled factor =1 at Q = 0 i.e. saddle pt. eq. does not change ((   at T = 0 in the conventional model is reproduced. (( cancelled factor =1 also at T = 0 i.e. quantities at T = 0 do not change   at T > 0 is not suppressed in the thermodynamic limit.

T / T c m m  topological susceptibility in the modified model  1 + N f 1  1  m(m+  0 )  where  0 : saddle pt. value m  m  · Decreasing  as T  · Comparable with lattice results  B.Alles, M.D’Elia, A.Di Giacomo, PLB483(2000) 

Summary and outlook  Chiral restoration and topological susceptibility  are studied in a random matrix model  formation of instanton molecules connects them via Banks-Casher relation and the index theorem.  Conventional random matrix model : 2 nd order chiral transition & unphysical suppression of  for T >0 in the thermodynamic limit.  We propose a modified model in which     &   are same as in the original model,  at T >0 is well-defined and decreases as T increases.  consistent with instanton molecule formation, lattice results  Outlook: To find out the random matrix before H-S transformation from which the modified model are derived, Extension to finite chemical potential, N f dependence … _