CIRCUITS and SYSTEMS – part II Prof. dr hab. Stanisław Osowski Electrical Engineering (B.Sc.) Projekt współfinansowany przez Unię Europejską w ramach Europejskiego.

Slides:



Advertisements
Similar presentations
Lecture 131 EEE 302 Electrical Networks II Dr. Keith E. Holbert Summer 2001.
Advertisements

Chapter 4 Modelling and Analysis for Process Control
Applications of Laplace Transforms Instructor: Chia-Ming Tsai Electronics Engineering National Chiao Tung University Hsinchu, Taiwan, R.O.C.
Lect15EEE 2021 Systems Concepts Dr. Holbert March 19, 2008.
The Laplace Transform in Circuit Analysis
Lecture 16: Continuous-Time Transfer Functions
Frequency Response of Discrete-time LTI Systems Prof. Siripong Potisuk.
Lecture 181 EEE 302 Electrical Networks II Dr. Keith E. Holbert Summer 2001.
Lecture 191 EEE 302 Electrical Networks II Dr. Keith E. Holbert Summer 2001.
5.7 Impulse Functions In some applications, it is necessary to deal with phenomena of an impulsive nature—for example, voltages or forces of large magnitude.
Network Functions Definition, examples , and general property
Complex Waveforms as Input Lecture 19 1 When complex waveforms are used as inputs to the circuit (for example, as a voltage source), then we (1) must Laplace.
ECE 8443 – Pattern Recognition ECE 3163 – Signals and Systems Objectives: First-Order Second-Order N th -Order Computation of the Output Signal Transfer.
Chapter 10 Analog Systems
CHAPTER 4 Laplace Transform.
Prepared by Mrs. Azduwin Binti Khasri
CHAPTER 4 Laplace Transform.
CIRCUITS and SYSTEMS – part I Prof. dr hab. Stanisław Osowski Electrical Engineering (B.Sc.) Projekt współfinansowany przez Unię Europejską w ramach Europejskiego.
Mathematical Models and Block Diagrams of Systems Regulation And Control Engineering.
CIRCUITS and SYSTEMS – part I Prof. dr hab. Stanisław Osowski Electrical Engineering (B.Sc.) Projekt współfinansowany przez Unię Europejską w ramach Europejskiego.
Fundamentals of Electric Circuits Chapter 16 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
CIRCUITS and SYSTEMS – part II Prof. dr hab. Stanisław Osowski Electrical Engineering (B.Sc.) Projekt współfinansowany przez Unię Europejską w ramach Europejskiego.
1 Lecture 1: February 20, 2007 Topic: 1. Discrete-Time Signals and Systems.
CIRCUITS and SYSTEMS – part I
CIRCUITS and SYSTEMS – part I Prof. dr hab. Stanisław Osowski Electrical Engineering (B.Sc.) Projekt współfinansowany przez Unię Europejską w ramach Europejskiego.
CIRCUITS and SYSTEMS – part II Prof. dr hab. Stanisław Osowski Electrical Engineering (B.Sc.) Projekt współfinansowany przez Unię Europejską w ramach Europejskiego.
Motivation Thus far we have dealt primarily with the input/output characteristics of linear systems. State variable, or state space, representations describe.
10. Laplace TransforM Technique
Lecture 4: Electrical Circuits
CIRCUITS and SYSTEMS – part II Prof. dr hab. Stanisław Osowski Electrical Engineering (B.Sc.) Projekt współfinansowany przez Unię Europejską w ramach Europejskiego.
1 Alexander-Sadiku Fundamentals of Electric Circuits Chapter 16 Applications of the Laplace Transform Copyright © The McGraw-Hill Companies, Inc. Permission.
CIRCUITS and SYSTEMS – part II Prof. dr hab. Stanisław Osowski Electrical Engineering (B.Sc.) Projekt współfinansowany przez Unię Europejską w ramach Europejskiego.
CIRCUITS and SYSTEMS – part I Prof. dr hab. Stanisław Osowski Electrical Engineering (B.Sc.) Projekt współfinansowany przez Unię Europejską w ramach Europejskiego.
ABE425 Engineering Measurement Systems ABE425 Engineering Measurement Systems Laplace Transform Dr. Tony E. Grift Dept. of Agricultural & Biological Engineering.
Lecture 12: First-Order Systems
ECE 8443 – Pattern Recognition ECE 3163 – Signals and Systems Objectives: Stability Response to a Sinusoid Filtering White Noise Autocorrelation Power.
EE313 Linear Systems and Signals Fall 2010 Initial conversion of content to PowerPoint by Dr. Wade C. Schwartzkopf Prof. Brian L. Evans Dept. of Electrical.
Dr. Tamer Samy Gaafar Lec. 2 Transfer Functions & Block Diagrams.
1 Lecture #18 EGR 272 – Circuit Theory II Transfer Functions (Network Functions) A transfer function, H(s), can be used to describe a system or circuit.
1 Eeng 224 Chapter 14 Frequency Response Huseyin Bilgekul Eeng 224 Circuit Theory II Department of Electrical and Electronic Engineering Eastern Mediterranean.
CSE 245: Computer Aided Circuit Simulation and Verification Instructor: Prof. Chung-Kuan Cheng Winter 2003 Lecture 2: Closed Form Solutions (Linear System)
 Sub : system response analysis using ‘MATLAB’. prepared by, chokshi abhi ( ) Guided by, Prof. Vishvjit.K.Thakar sir(Head of ECE dept.).
CONTROL SYSTEM UNIT - 6 UNIT - 6 Datta Meghe Institute of engineering Technology and Research Sawangi (meghe),Wardha 1 DEPARTMENT OF ELECTRONICS & TELECOMMUNICATION.
University of Warwick: AMR Summer School 4 th -6 th July, 2016 Structural Identifiability Analysis Dr Mike Chappell, School of Engineering, University.
ELECTRIC CIRCUITS EIGHTH EDITION
ELECTRIC CIRCUITS EIGHTH EDITION JAMES W. NILSSON & SUSAN A. RIEDEL.
Analog CMOS Integrated Circuit Design Opamp Design
EE4262: Digital and Non-Linear Control
Frequency response I As the frequency of the processed signals increases, the effects of parasitic capacitance in (BJT/MOS) transistors start to manifest.
UNIT-III Signal Transmission through Linear Systems
LECTURE 30: SYSTEM ANALYSIS USING THE TRANSFER FUNCTION
DEPT.:-ELECTRONICS AND COMMUNICATION SUB: - CIRCUIT & NETWORK
Transfer Functions.
Automatic Control Theory CSE 322
Feedback Control Systems (FCS)
Laplace and Z transforms
Description and Analysis of Systems
Fundamentals of Electric Circuits Chapter 16
Digital Control Systems (DCS)
Signals and Systems Using MATLAB Luis F. Chaparro
Digital Control Systems (DCS)
ELEC 202 Circuit Analysis II
Time Response System & Control Engineering Lab.
Signals and Systems Lecture 2
Chapter 2. Mathematical Foundation
CIRCUITS and SYSTEMS – part II
Transfer Function and Stability of LTI Systems
CIRCUITS and SYSTEMS – part II
CIRCUITS and SYSTEMS – part I
Chapter 10 Analog Systems
Presentation transcript:

CIRCUITS and SYSTEMS – part II Prof. dr hab. Stanisław Osowski Electrical Engineering (B.Sc.) Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego. Publikacja dystrybuowana jest bezpłatnie

Lecture 12 Transfer function concept

3 Definition of transfer function Transfer function is defined as the ratio of Laplace transform of output signal Y(s) and input signal X(s) at zero initial conditions Sometimes transfer function is denoted also by T(s)

4 Definition of transfer function (cont.) Voltage transfer function Current transfer function

5 Definition of transfer function (cont.) Voltage-to-current transfer function Current-to-voltage transfer function Special case of transfer function is the input impedance

6 Transfer function of RLC circuits Each RLC element has its operator description General form of transfer function

7 Impulse and step responses Impulse response is the time response of the circuit for Dirac impulse excitation at zero initial conditions Step response is the time response of the circuit for unity Heaviside excitation at zero initial conditions

8 Example Impulse response Step response Transfer function of the circuit is given in the form

9 Example (cont.) Impulse response Step response

10 Stability of linear circuits Stability BIBO (Bounded Input – Bounded Output): the circuit is stable if at bounded input excitation the output signal is also bounded at any time t. Dependence of stability on the placement of poles

11 Impulse response of 2nd order transfer function

12 Frequency characteristics Magnitude characteristics (magnitude of spectral function) Phase characteristics (phase of spectral function) Logarithmic magnitude characteristics Spectral transfer function is the frequency characteristics of the circuit. It represents the dependence of output signal on the frequncy at the sinusoidal input signal of unity magnitude and changing frequency.

13 Example Transfer function is given in the form Magnitude characteristics Linear and logarithmic form of magnitude characteristics

14 First order transfer functions 1) Integrator Frequency characteristics Magnitude and phase characteristics

15 First order transfer functions (cont.) 2) Differentiator Frequency characteristics Magnitude and phase characteristics

16 First order transfer functions (cont.) 3) Phase shifter Frequency characteristics Magnitude and phase characteristics

17 Frequency characteristics of nth order transfer function General form Frequency characteristics Magnitude and phase characteristics

18 Example Determine the voltage transfer function of the circuit. Assume: R=1 , L=2H, C=1F Solution: Operator form of the circuit

19 Example (cont.) Current I(s) Voltage transfer function Output voltage