Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke1 Data Warehousing and Decision Support.

Slides:



Advertisements
Similar presentations
Relational On-Line Analytical Processing (ROLAP)
Advertisements

12/18/20141 PSU’s CS Data Warehouses and Decision Support Len Shapiro, for CS386, 11/2-3/05. Some slides taken from Ramakrishnan and Gherke,
12/18/20141 Lecture 10: Data Warehouses  Introduction  Operational vs. Warehouse  Multidimensional Data  Examples  MOLAP vs ROLAP  Dimensional Hierarchies.
Data Warehousing and Decision Support, part 2
Data Warehousing CPS216 Notes 13 Shivnath Babu. 2 Warehousing l Growing industry: $8 billion way back in 1998 l Range from desktop to huge: u Walmart:
Jennifer Widom On-Line Analytical Processing (OLAP) Introduction.
CMPT 354, Simon Fraser University, Fall 2008, Martin Ester 391 Database Systems I Data Warehousing.
ICS 421 Spring 2010 Data Warehousing 2 Asst. Prof. Lipyeow Lim Information & Computer Science Department University of Hawaii at Manoa 3/30/20101Lipyeow.
ICS 421 Spring 2010 Data Warehousing (1) Asst. Prof. Lipyeow Lim Information & Computer Science Department University of Hawaii at Manoa 3/18/20101Lipyeow.
Database Systems: Design, Implementation, and Management Tenth Edition
Decision Support and Data Warehouse. Decision supports Systems Components Data management function –Data warehouse Model management function –Analytical.
OLAP. Overview Traditional database systems are tuned to many, small, simple queries. Some new applications use fewer, more time-consuming, analytic queries.
1 OLAP and Decision Support Chapter 25, Part A. 2 Introduction  Increasingly, organizations are analyzing current and historical data to identify useful.
Advanced Querying OLAP Part 2. Context OLAP systems for supporting decision making. Components: –Dimensions with hierarchies, –Measures, –Aggregation.
CS 286, UC Berkeley, Spring 2007, R. Ramakrishnan 1 Decision Support Chapter 25.
COMP 578 Data Warehousing And OLAP Technology Keith C.C. Chan Department of Computing The Hong Kong Polytechnic University.
Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke1 Data Warehousing and Decision Support Chapter 25, Part A.
Lab3 CPIT 440 Data Mining and Warehouse.
Data Warehousing. On-Line Analytical Processing (OLAP) Tools The use of a set of graphical tools that provides users with multidimensional views of their.
CSE6011 Warehouse Models & Operators  Data Models  relations  stars & snowflakes  cubes  Operators  slice & dice  roll-up, drill down  pivoting.
Chapter 13 The Data Warehouse
CS346: Advanced Databases
Online Analytical Processing (OLAP) Hweichao Lu CS157B-02 Spring 2007.
Data Warehousing and Decision Support CS634 Class 22, Apr 28, 2014 Slides based on “Database Management Systems” 3 rd ed, Ramakrishnan and Gehrke, Chapter.
XCube XML For Data Warehouses By Sven Groot. Data warehouses Contains data drawn from several databases and external sources Contains data drawn from.
Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke1 Decision Support Chapter 23.
CPSC 404, Laks V.S. Lakshmanan 1 Data Warehousing & OLAP Chapter 25, Ramakrishnan & Gehrke (Sections )
 Data warehouses  Decision support  The multidimensional model  OLAP queries.
Week 6 Lecture The Data Warehouse Samuel Conn, Asst. Professor
©Silberschatz, Korth and Sudarshan18.1Database System Concepts - 5 th Edition, Aug 26, 2005 Buzzword List OLTP – OnLine Transaction Processing (normalized,
Data Warehouse & Data Mining
Multi-Dimensional Databases & Online Analytical Processing This presentation uses some materials from: “ An Introduction to Multidimensional Database Technology,
Database Systems I Data Warehousing I NTRODUCTION Increasingly, organizations are analyzing current and historical data to identify useful patterns.
1 Data Warehouses BUAD/American University Data Warehouses.
OLAP & DSS SUPPORT IN DATA WAREHOUSE By - Pooja Sinha Kaushalya Bakde.
Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke1 Decision Support Chapter 23.
Data Warehouse & OLAP Kuliah 1 Introduction Slide banyak mengambil dari acuan- acuan yang dipakai.
Data Warehousing.
Roadmap 1.What is the data warehouse, data mart 2.Multi-dimensional data modeling 3.Data warehouse design – schemas, indices 4.The Data Cube operator –
October 28, Data Warehouse Architecture Data Sources Operational DBs other sources Analysis Query Reports Data mining Front-End Tools OLAP Engine.
Decision Support and Date Warehouse Jingyi Lu. Outline Decision Support System OLAP vs. OLTP What is Date Warehouse? Dimensional Modeling Extract, Transform,
13 1 Chapter 13 The Data Warehouse Database Systems: Design, Implementation, and Management, Seventh Edition, Rob and Coronel.
Chapter 5 DATA WAREHOUSING Study Sections 5.2, 5.3, 5.5, Pages: & Snowflake schema.
1 On-Line Analytic Processing Warehousing Data Cubes.
CMPE 226 Database Systems October 21 Class Meeting Department of Computer Engineering San Jose State University Fall 2015 Instructor: Ron Mak
Data Warehousing Multidimensional Analysis
Business Intelligence Transparencies 1. ©Pearson Education 2009 Objectives What business intelligence (BI) represents. The technologies associated with.
OLAP & Data Warehousing. R. Ramakrishnan and J. Gehrke1 Decision Support Chapter 23.
Data Warehousing.
Advanced Database Concepts
The Data Warehouse Chapter Operational Databases = transactional database  designed to process individual transaction quickly and efficiently.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Data Warehousing and Decision Support Chapter 25.
1 Database Systems, 8 th Edition Star Schema Data modeling technique –Maps multidimensional decision support data into relational database Creates.
Introduction to OLAP and Data Warehouse Assoc. Professor Bela Stantic September 2014 Database Systems.
An Overview of Data Warehousing and OLAP Technology
Data Warehouses and OLAP 1.  Review Questions ◦ Question 1: OLAP ◦ Question 2: Data Warehouses ◦ Question 3: Various Terms and Definitions ◦ Question.
Data Warehousing COMP3017 Advanced Databases Dr Nicholas Gibbins –
Data Warehousing and OLAP Outline u Models & operations u Implementing a warehouse u Future directions.
Pertemuan <<13>> Data Warehousing dan Decision Support
Data Warehousing CIS 4301 Lecture Notes 4/20/2006.
On-Line Analytic Processing
Chapter 13 The Data Warehouse
Data storage is growing Future Prediction through historical data
Data Warehouse.
On-Line Analytical Processing (OLAP)
Data Warehouse and OLAP
Introduction of Week 9 Return assignment 5-2
DATA CUBES E0 261 Jayant Haritsa Computer Science and Automation
Data Warehouse and OLAP
Presentation transcript:

Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke1 Data Warehousing and Decision Support

Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke2 Introduction  Increasingly, organizations are analyzing current and historical data to identify useful patterns and support business strategies.  Emphasis is on complex, interactive, exploratory analysis of very large datasets created by integrating data from across all parts of an enterprise; data is fairly static.  Contrast such On-Line Analytic Processing (OLAP) with traditional On-line Transaction Processing (OLTP): mostly long queries, instead of short update Xacts.

Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke3 Three Complementary Trends  Data Warehousing: Consolidate data from many sources in one large repository.  Loading, periodic synchronization of replicas.  Semantic integration.  OLAP:  Complex SQL queries and views.  Queries based on spreadsheet-style operations and “multidimensional” view of data.  Interactive and “online” queries.  Data Mining: Exploratory search for interesting trends and anomalies. (Another Course! CS565)

Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke4 Data Warehousing  Integrated data spanning long time periods, often augmented with summary information.  Many terabytes common.  Interactive response times expected for complex queries; ad-hoc updates uncommon. EXTERNAL DATA SOURCES EXTRACT TRANSFORM LOAD REFRESH DATA WAREHOUSE Metadata Repository SUPPORTS OLAP DATA MINING

Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke5 Warehousing Issues  Semantic Integration: When getting data from multiple sources, must eliminate mismatches, e.g., different currencies, schemas.  Heterogeneous Sources: Must access data from a variety of source formats and repositories.  Replication capabilities can be exploited here.  Load, Refresh, Purge: Must load data, periodically refresh it, and purge too-old data.  Metadata Management: Must keep track of source, loading time, and other information for all data in the warehouse.

Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke6 Multidimensional Data Model  Collection of numeric measures, which depend on a set of dimensions.  E.g., measure Sales, dimensions Product (key: pid), Location (locid), and Time (timeid) timeid pid pid timeidlocid sales locid Slice locid=1 is shown:

Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke7 MOLAP vs ROLAP  Multidimensional data can be stored physically in a (disk-resident, persistent) array; called MOLAP systems. Alternatively, can store as a relation; called ROLAP systems.  The main relation, which relates dimensions to a measure, is called the fact table. Each dimension can have additional attributes and an associated dimension table.  E.g., Products(pid, pname, category, price)  Fact tables are much larger than dimensional tables.

Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke8 Dimension Hierarchies  For each dimension, the set of values can be organized in a hierarchy: PRODUCTTIMELOCATION category week month state pname date city year quarter country

Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke9 OLAP Queries  Influenced by SQL and by spreadsheets.  A common operation is to aggregate a measure over one or more dimensions.  Find total sales.  Find total sales for each city, or for each state.  Find top five products ranked by total sales.  Roll-up: Aggregating at different levels of a dimension hierarchy.  E.g., Given total sales by city, we can roll-up to get sales by state.

Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke10 OLAP Queries  Drill-down: The inverse of roll-up.  E.g., Given total sales by state, can drill-down to get total sales by city.  E.g., Can also drill-down on different dimension to get total sales by product for each state.  Pivoting: Aggregation on selected dimensions.  E.g., Pivoting on Location and Time yields this cross-tabulation : WI CA Total Total  Slicing and Dicing: Equality and range selections on one or more dimensions.

Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke11 Comparison with SQL Queries  The cross-tabulation obtained by pivoting can also be computed using a collection of SQLqueries: SELECT SUM (S.sales) FROM Sales S, Times T, Locations L WHERE S.timeid=T.timeid AND S.timeid=L.timeid GROUP BY T.year, L.state SELECT SUM (S.sales) FROM Sales S, Times T WHERE S.timeid=T.timeid GROUP BY T.year SELECT SUM (S.sales) FROM Sales S, Location L WHERE S.timeid=L.timeid GROUP BY L.state

Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke12 The CUBE Operator  Generalizing the previous example, if there are k dimensions, we have 2^k possible SQL GROUP BY queries that can be generated through pivoting on a subset of dimensions.  CUBE pid, locid, timeid BY SUM Sales  Equivalent to rolling up Sales on all eight subsets of the set {pid, locid, timeid}; each roll-up corresponds to an SQL query of the form: SELECT SUM (S.sales) FROM Sales S GROUP BY grouping-list Lots of work on optimizing the CUBE operator!

Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke13 Design Issues  Fact table in BCNF; dimension tables un-normalized.  Dimension tables are small; updates/inserts/deletes are rare. So, anomalies less important than query performance.  This kind of schema is very common in OLAP applications, and is called a star schema; computing the join of all these relations is called a star join. pricecategorypnamepidcountrystatecitylocid saleslocidtimeidpid holiday_flagweekdatetimeidmonthquarteryear (Fact table) SALES TIMES PRODUCTSLOCATIONS