Lucia Bortko | Optimisation Studies for the BeamCal Design | 2013-09-25 | IFJ PAN Krakow | Page 1/16 Optimisation Studies for the BeamCal Design Lucia.

Slides:



Advertisements
Similar presentations
CBM Calorimeter System CBM collaboration meeting, October 2008 I.Korolko(ITEP, Moscow)
Advertisements

Proposal for a new design of LumiCal R. Ingbir, P. Ruzicka, V. Vrba October 07 Malá Skála.
The performance of Strip-Fiber EM Calorimeter response uniformity, spatial resolution The 7th ACFA Workshop on Physics and Detector at Future Linear Collider.
Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen.
Bulk Micromegas Our Micromegas detectors are fabricated using the Bulk technology The fabrication consists in the lamination of a steel woven mesh and.
TESLA R&D: LCAL/LAT Achim Stahl DESY Zeuthen Cracow Tel Aviv Minsk Prague Colorado Protvino UCL London Dubna.
Background Studies Takashi Maruyama SLAC ALCPG 2004 Winter Workshop January 8, 2004.
Michele Faucci Giannelli TILC09, Tsukuba, 18 April 2009 SiW Electromagnetic Calorimeter Testbeam results.
Beamdiagnostics by Beamstrahlung Analysis C.Grah ILC ECFA 2006 Valencia, 9 th November 2006.
August 2005Snowmass Workshop IP Instrumentation Wolfgang Lohmann, DESY Measurement of: Luminosity (precise and fast) Energy Polarisation.
August 2005Snowmass Workshop Instrumentation of the Very Forward Region of a Linear Collider Detector Wolfgang Lohmann, DESY.
Time development of showers in a Tungsten-HCAL Calice Collaboration Meeting – Casablanca 2010 Christian Soldner Max-Planck-Institute for Physics.
Construct two layers of hadron calorimeter and test Makoto Harada High Energy Physics Laboratory Faculty of Physics Department of Science Shinshu University.
1 Alessandra Casale Università degli Studi di Genova INFN Sezione Genova FT-Cal Prototype Simulations.
Ronen Ingbir Collaboration High precision design Tel Aviv University HEP Experimental Group Cambridge ILC software tools meeting.
Jan MDI WS SLAC Electron Detection in the Very Forward Region V. Drugakov, W. Lohmann Motivation Talk given by Philip Detection of Electrons and.
BeamCal Simulations with Mokka Madalina Stanescu-Bellu West University Timisoara, Romania Desy, Zeuthen 30 Jun 2009 – FCAL Meeting.
Calorimeter technologies for forward region instrumentation K. Afanaciev 2, R. Dollan 1 V. Drugakov 2, C. Grah 1, E. Kouznetsova 1, W. Lange 1, W. Lohmann.
Montpellier, November 15, 2003 J. Cvach, TileHCAL and APD readout1 TileHCAL- fibre readout by APD APDs and preamplifiers Energy scan with DESY beam –Energy.
High Dose Irradiation of Possible FCAL Sensors at the S-DALINAC Ch.Grah Physics and Detector Meeting DESY HH,
March 2004LCWS Stanford Instrumentation of the Very Forward Region of a Linear Collider Detector Wolfgang Lohmann, DESY.
Simulation of physics background for luminosity calorimeter M.Pandurović I. Božović-Jelisavčić “Vinča“ Institute of Nuclear Sciences, Belgrade, SCG.
Diamond Detector Developments at DESY and Measurements on homoepitaxial sCVD Diamond Christian Grah - DESY Zeuthen 2 nd NoRHDia Workshop at GSI Thursday,
CVD Diamond Sensor Studies for the Beam Calorimeter of the ILC Detector K. Afanaciev 2, I.Emelianchik 2, Ch. Grah 1, E. Kouznetsova 1, W. Lange 1, W. Lohmann.
Polycrystalline CVD Diamonds for the Beam Calorimeter of the ILC C. Grah 1, U. Harder 1, H. Henschel 1, E. Kouznetsova 1, W. Lange 1, W. Lohmann 1, M.
2. December 2005Valencia Workshop Very Forward Region Instrumentation Wolfgang Lohmann, DESY Basic functions: - Hermeticity to small polar angles - Fast.
Septembre SLAC BeamCal W. Lohmann, DESY BeamCal: ensures hermeticity of the detector to smallest polar angles -important for searches Serves as.
Karsten Büßer Instrumentation of the Forward Region of the TESLA Detector International Europhysics Conference on High Energy Physics Aachen, July 19th.
ILC-ECFA Workshop Valencia November 2006 Four-fermion processes as a background in the ILC luminosity calorimeter for the FCAL Collaboration I. Božović-Jelisavčić,
Fast Beam Diagnostics at the ILC Using the Beam Calorimeter Christian Grah, Desy FCAL Workshop February Cracow.
Coil and HCAL Parameters for CLIC Solenoid and Hadron-calorimetry for a high energy LC Detector 15. December LAPP Christian Grefe CERN.
G4 Validation meeting (5/11/2003) S.VIRET LPSC Grenoble Photon testbeam Data/G4 comparison  Motivation  Testbeam setup & simulation  Analysis & results.
Electron Detection in the SiD BeamCal Jack Gill, Gleb Oleinik, Uriel Nauenberg, University of Colorado ALCPG Meeting ‘09 2 October 2009.
Calorimeter in front of MUCh Mikhail Prokudin. Overview ► Geometry and acceptance ► Reconstruction procedure  Cluster finder algorithms  Preliminary.
TESLA R&D: Forward Region Achim Stahl DESY Zeuthen Cracow Tel Aviv Minsk Prague Colorado Protvino UC London Dubna.
3rd NoRDHia 1 TITLE INVESTIGATION OF DIAMOND SAMPLES UNDER HIGH DOSES OF ELECTROMAGNETIC IRRADIATION (at S-DALINAC) Wolfgang Lange, DESY Zeuthen.
Reconstructing energy from HERD beam test data Zheng QUAN IHEP 3 rd HERD work shop Xi’an, 20 Jan
1 Hadronic calorimeter simulation S.Itoh, T.Takeshita ( Shinshu Univ.) GLC calorimeter group Contents - Comparison between Scintillator and Gas - Digital.
16 February 2009CLIC Physics & Detectors Konrad Elsener 1... some issues regarding the forward region... (“picking up” from Lucie Linssen, 29 Sept 2008)
The Luminosity Calorimeter Iftach Sadeh Tel Aviv University Desy ( On behalf of the FCAL collaboration ) June 11 th 2008.
1 LumiCal Optimization Simulations Iftach Sadeh Tel Aviv University Collaboration High precision design May 6 th 2008.
Polycrystalline CVD Diamonds for the Beam Calorimeter of the ILC C.Grah ILC ECFA 2006 Valencia, 9 th November 2006.
Report on the UCSC/SCIPP BeamCal Simulation Effort SiD Optimization Meeting 22 October 2014 Bruce Schumm UC Santa Cruz Institute for Particle Physics.
October DESY PRC Instrumentation of the Very Forward Region of a Linear Collider Detector Univ. of Colorado, Boulder, AGH Univ., INP & Jagiell.
Fast and Precise Luminosity Measurement at the ILC Ch.Grah LCWS 2006 Bangalore.
Beamdiagnostics using BeamCal C.Grah FCAL Workshop, Paris,
1/24 SiD FCAL Takashi Maruyama Tom Markiewicz SLAC TILC’09, Tskuba, Japan, April 2009 Contributors: SLAC M. BreidenbachFNALW. Cooper G. Haller K.
September 2007SLAC IR WS Very Forward Instrumentation of the ILC Detector Wolfgang Lohmann, DESY Talks by M. Morse, W. Wierba, myself.
5 May 2006Paul Dauncey1 The ILC, CALICE and the ECAL Paul Dauncey Imperial College London.
CALICE, CERN June 29, 2004J. Zálešák, APDs for tileHCAL1 APDs for tileHCAL MiniCal studies with APDs in e-test beam J. Zálešák, Prague with different preamplifiers.
Testbeam analysis Lesya Shchutska. 2 beam telescope ECAL trigger  Prototype: short bars (3×7.35×114 mm 3 ), W absorber, 21 layer, 18 X 0  Readout: Signal.
Performance Study of Pair-monitor 2009/06/30 Yutaro Sato Tohoku Univ.
1 LoI FCAL Takashi Maruyama SLAC SiD Workshop, SLAC, March 2-4, 2009 Contributors: SLAC M. BreidenbachFNALW. Cooper G. Haller K. Krempetz T. MarkiewiczBNLW.
Measurement the Higgs mass via the channel: e + e - → Z H → e + e - + X & Analog vs. Digital Energy Reconstruction in the Si-W ECal Youssef KHOULAKI ILCP.
Octobre 2007LAL Orsay Very Forward Instrumentation of the ILC Detector Wolfgang Lohmann, DESY.
Simulation Plan Discussion What are the priorities? – Higgs Factory? – 3-6 TeV energy frontier machine? What detector variants? – Basic detector would.
A Forward Calorimeter (FoCal) as upgrade for the ALICE experiment at CERN S. Muhuri a, M. Reicher b and T. Tsuji c a Variable Energy Cyclotron Centre,
I nstrumentation of the F orward R egion Collaboration High precision design ECFA - Durham2004 University of Colorado AGH University, Cracow I nstitute.
Very Forward Instrumentation: BeamCal Ch. Grah FCAL Collaboration ILD Workshop, Zeuthen Tuesday 15/01/2008.
Physics performance of a DHCAL with various absorber materials Jan BLAHA CALICE Meeting, 16 – 18 Sep. 2009, Lyon, France.
Initial proposal for the design of the luminosity calorimeter at a 3TeV CLIC Iftach Sadeh Tel Aviv University March 6th 2009
Diamond – Tungsten Calorimeter LCAL-group : K. Afanasiev, V. Drugakov, E. Kouznetsova, W. Lohmann, A. Stahl Workshop on Forward Calorimetry and Luminosity.
Doses and bunch by bunch fluctuations in BeamCal at the ILC Eliza Teodorescu FCAL Collaboration Meeting June 29-30, 2009, DESY-Zeuthen, Germany.
Analysis of LumiCal data from the 2010 testbeam
Luminosity and Beamtuning Calorimeters in the very Forward Region
The Optimized Sensor Segmentation for the Very Forward Calorimeter
Maria Person Gulda , Uriel Nauenberg, Gleb Oleinik,
Simulation study for Forward Calorimeter in LHC-ALICE experiment
Michele Faucci Giannelli
LC Calorimeter Testbeam Requirements
Presentation transcript:

Lucia Bortko | Optimisation Studies for the BeamCal Design | | IFJ PAN Krakow | Page 1/16 Optimisation Studies for the BeamCal Design Lucia Bortko, DESY – Zeuthen ILD Meeting | IFJ PAN - Krakow | Sep 2013

Lucia Bortko | Optimisation Studies for the BeamCal Design | | IFJ PAN Krakow | Page 2/16 The Aim and Content

Lucia Bortko | Optimisation Studies for the BeamCal Design | | IFJ PAN Krakow | Page 3/16 Beam Calorimeter for ILC 30 layers Tungsten absorber Diamond sensor Readout plane/air gap Graphite absorber BeamCal aimed: -Detect sHEe - Determine Beam Parameters -Masking backscattered low energetic particles Beam parameters from the ILC Technical Design Report (November 2012) - Nominal parameter set - Center-of-mass energy 1 TeV FE

Lucia Bortko | Optimisation Studies for the BeamCal Design | | IFJ PAN Krakow | Page 4/16 BeamCal Segmentation Uniform Segmentation (US) pads size are the same Proportional Segmentation (PS) pads size are proportional to the radius Similar number of channels Y, cm

Lucia Bortko | Optimisation Studies for the BeamCal Design | | IFJ PAN Krakow | Page 5/16 Energy Deposition due to Beamstrahlung US RMS PS Average 10 BX Figures show sum of all layers Average 10 BX

Lucia Bortko | Optimisation Studies for the BeamCal Design | | IFJ PAN Krakow | Page 6/16 Shower from Single High Energy Electron -Showers are simulated with BeCaS (Geant4) -Investigated energies: 10, 20, 50, 100, 200, 500 GeV Shower from 100- GeV electron Maximum in 10 th layer (average over 10 showers) Longitudinal shower profile

Lucia Bortko | Optimisation Studies for the BeamCal Design | | IFJ PAN Krakow | Page 7/16 Proportional Segmentation Uniform Segmentation The average energy in the pad of the core of shower RMS of the averaged Background Signal and RMS for both Segmentations 20 bunch crossings were given Signal nearly segmentation- independent! Different distributions! Proportional Segmentation

Lucia Bortko | Optimisation Studies for the BeamCal Design | | IFJ PAN Krakow | Page 8/16 SNR in cell with maximum _  PS  US  PS  US

Lucia Bortko | Optimisation Studies for the BeamCal Design | | IFJ PAN Krakow | Page 9/16 Efficiency of Showers Reconstruction  PS  US Radius, cm  PS  US

Lucia Bortko | Optimisation Studies for the BeamCal Design | | IFJ PAN Krakow | Page 10/16 Charge Range Estimate Diamond PS US PS US Distribution of the collected charge per pad from Background for Diamond Distribution of the collected charge per pad from 500Gev electron for Diamond Showers Background DiamondGaAs Charge collected from MIP2.44 fC4.29 fC Maximum collected charge from 500GeV electron fC fC Correspond to about MIPs For sensor pad thickness 300 µm:

Lucia Bortko | Optimisation Studies for the BeamCal Design | | IFJ PAN Krakow | Page 11/16 Deposited Energy vs Energy of Electron Energy deposition (GeV) Number of events y = 0,017x + 0,0051

Lucia Bortko | Optimisation Studies for the BeamCal Design | | IFJ PAN Krakow | Page 12/16 Energy Resolution vs Energy of Electron Energy Resolution Energy of Electron (GeV)

Lucia Bortko | Optimisation Studies for the BeamCal Design | | IFJ PAN Krakow | Page 13/16 Spatial Resolution ( In Process) Estimation PS US COG x y

Lucia Bortko | Optimisation Studies for the BeamCal Design | | IFJ PAN Krakow | Page 14/16 Spatial Resolution ( In Process) Corrected COG Energy of Electron Gaussian fit 0 ∆R Parameters

Lucia Bortko | Optimisation Studies for the BeamCal Design | | IFJ PAN Krakow | Page 15/16 Conclusion

Lucia Bortko | Optimisation Studies for the BeamCal Design | | IFJ PAN Krakow | Page 16/16 Thank you for your attention!

Lucia Bortko | Optimisation Studies for the BeamCal Design | | IFJ PAN Krakow | Page 17/16 Backup slides

Lucia Bortko | Optimisation Studies for the BeamCal Design | | IFJ PAN Krakow | Page 18/16 Layer 7 Layer 11 Shower maximum – Layer 9  PS  US  PS  US  PS  US SNR for 50 GeV Electron

Lucia Bortko | Optimisation Studies for the BeamCal Design | | IFJ PAN Krakow | Page 19/16 Layer 6 Layer 10 Shower maximum – Layer 8  PS  US  PS  US  PS  US SNR for 20 GeV Electron

Lucia Bortko | Optimisation Studies for the BeamCal Design | | IFJ PAN Krakow | Page 20/16 Layer 5 Layer 9 SNR for 10 GeV Electron  PS  US  PS  US  PS  US Shower maximum – Layer 7

Lucia Bortko | Optimisation Studies for the BeamCal Design | | IFJ PAN Krakow | Page 21/16 Charge range estimate For Diamond sensor pad thickness 300 µm: - Charge collected from MIP: 2.44 fC - Maximum charge collected – for shower from 500 GeV electron: fC (correspond to about 5000 MIPs) DiamondGaAs Distribution of the collected charge per pad for 500Gev electron showers

Lucia Bortko | Optimisation Studies for the BeamCal Design | | IFJ PAN Krakow | Page 22/16 Diamond GaAs Blue – Uniform Segmentation Orange - Proportional Green – Uniform Segmentation Blue - Proportional Distribution of the collected charge per pad for 500Gev electron showers

Lucia Bortko | Optimisation Studies for the BeamCal Design | | IFJ PAN Krakow | Page 23/16 Efficiency of Showers Reconstruction Efficiency for 50 GeV  PS  US

Lucia Bortko | Optimisation Studies for the BeamCal Design | | IFJ PAN Krakow | Page 24/16 Proportional Segmentation Uniform Segmentation The average energy in the pad of the core of shower RMS of the averaged Background Uniform Segmentation Signal and RMS for both Segmentations 20 bunch crossings were given Signal nearly segmentation- independent! Different distributions! Proportional Segmentation