© 2015 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 37.

Slides:



Advertisements
Similar presentations
Conversion and Reactor sizing
Advertisements

Conversion and Reactor Sizing
Modelling & Simulation of Chemical Engineering Systems
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 21.
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 15.
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 11.
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 3.
SABIC Chair in Catalysis at KAU Chemical Reaction Engineering Dr. Yahia Alhamed.
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 10.
© 2015 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 32.
ISOTHERMAL REACTOR DESIGN
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 22.
A First Course on Kinetics and Reaction Engineering
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 28.
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 23.
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 11.
© 2015 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 31.
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 19.
Mole balance for chemical reaction engineering (Design Equations for reactors) Lec 3 week 3.
Chemical Reaction Engineering Asynchronous Video Series Chapter 1: General Mole Balance Equation Applied to Batch Reactors, CSTRs, PFRs, and PBRs H. Scott.
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 14.
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 26.
Review: Logic of Isothermal Reactor Design
© 2015 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 33.
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 12.
© 2015 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 31.
Lecture 1: Kinetics of Substrate Utilization and Product Formation
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 13.
© 2015 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 34.
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 12.
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 23.
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 17.
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 29.
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 4.
Isothermal Reactor Design
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 30.
Chapter 13 Chemical Equilibrium The state where the concentrations of all reactants and products remain constant with time. On the molecular level, there.
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 13.
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 25.
Conversion and Reactor Sizing Lec 4 week 4. Definition of Conversion for the following reaction The reaction can be arranged as follows: how far the above.
© 2015 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 34.
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 14.
Lecture 8 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 17.
© 2015 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 33.
Isothermal reactor design
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 30.
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 25.
Pressure drop in PBR Lec 10 week 13. Pressure Drop and the Rate Law We now focus our attention on accounting for the pressure drop in the rate law. to.
© 2015 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 36.
© 2015 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 37.
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 24.
© 2015 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 35.
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 3.
© 2016 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 38.
© 2014 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 4.
Reactor Design. تحت شعار العيد فرحة : الجمهور : طبعا النهاردة نص يوم علشان العيد خلص امبارح؟ أنا : لأ الجمهور : يعني النهاردة هناخد سكشن؟ أنا : ونص الجمهور.
© 2016 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 40.
EQUILIBRIUM. Equilibrium Constant (K Values)  The equilibrium constant (Keq) is a number showing the relationship between the concentration of the products.
ChE 402: Chemical Reaction Engineering
ChE 402: Chemical Reaction Engineering
Review: What size reactor(s) to use?
A First Course on Kinetics and Reaction Engineering
A First Course on Kinetics and Reaction Engineering
A First Course on Kinetics and Reaction Engineering
A First Course on Kinetics and Reaction Engineering
A First Course on Kinetics and Reaction Engineering
Process Equipment Design Chemical Reactors
Kinetics Patrick Cable, Dat Huynh, Greg Kalinyak, Ryan Leech, Wright Makambi, Ronak Ujla.
Steady-state Nonisothermal reactor Design Part I
Presentation transcript:

© 2015 Carl Lund, all rights reserved A First Course on Kinetics and Reaction Engineering Class 37

Where We’re Going Part I - Chemical Reactions Part II - Chemical Reaction Kinetics Part III - Chemical Reaction Engineering Part IV - Non-Ideal Reactions and Reactors ‣ A. Alternatives to the Ideal Reactor Models  33. Axial Dispersion Model  D and 3-D Tubular Reactor Models  35. Zoned Reactor Models  36. Segregated Flow Models  37. Overview of Multi-Phase Reactors ‣ B. Coupled Chemical and Physical Kinetics  38. Heterogeneous Catalytic Reactions  39. Gas-Liquid Reactions  40. Gas-Solid Reactions

Reactors Other Than CSTRs and PFRs When reactants and/or products are present in two or more phases in a reactor, it is generally necessary to write mole and energy balances on each phase In some cases simple stirred tanks or tubular packed beds are used for multi-phase reactions In other cases, more specialized reactors are used ‣ For gas-solid or solid-catalyzed gas phase reactions  fluidized bed reactors  riser reactors ‣ For solid-catalyzed gas-liquid reactions  trickle bed reactors  slurry reactors (also for solid-catalyzed liquid reactions) ‣ For gas-liquid reactions  spray tower reactors  bubble column reactors ‣ Combined reaction and separation  Reactive distillation columns  Membrane reactors ‣ Laminar flow reactors

Questions?

A gas mixture containing CO 2 is fed to an isothermal, steady state CSTR. A solution containing an amine, NH 2 R, is also fed to the reactor. The agitator system for the reactor has been designed so that the gas phase may be treated as perfectly mixed. The gas is dispersed as bubbles in the liquid, which is also perfectly mixed. The inlet molar flow rates of all species are known and constant, as are the liquid volume, the gas volume and the interfacial area per volume of liquid, A V. The inlet and outlet volumetric flow rates may be taken to be equal and known. None of the gases except CO 2 are soluble in the solution, and none of the components of the solution are volatile. When CO 2 dissolves in the solution, it reacts with the amine to form an adduct according to equation (1). The rate expression for the reaction is given in equation (2) where square brackets denote solution phase concentrations, and the rate coefficient is known. If the reaction rate is very, very slow, then the gas phase and solution phase CO 2 will be equilibrated according to Henry’s Law, equation (3), where h is the known Henry’s law constant. Write the mole balance design equations needed to calculate the amount of CO 2 removed from the gas phase by this reactor. NH 2 R + CO 2 → CO 2 :NH 2 R(1) (2) (3)

Where We’re Going Part I - Chemical Reactions Part II - Chemical Reaction Kinetics Part III - Chemical Reaction Engineering Part IV - Non-Ideal Reactions and Reactors ‣ A. Alternatives to the Ideal Reactor Models  33. Axial Dispersion Model  D and 3-D Tubular Reactor Models  35. Zoned Reactor Models  36. Segregated Flow Models  37. Overview of Multi-Phase Reactors ‣ B. Coupled Chemical and Physical Kinetics  38. Heterogeneous Catalytic Reactions  39. Gas-Liquid Reactions  40. Gas-Solid Reactions