TRIGONOMETRY FINDING AN UNKNOWN SIDE

Slides:



Advertisements
Similar presentations
Trigonometry Right Angled Triangle. Hypotenuse [H]
Advertisements

Lesson 5.2 Apply the tangent ratio Georgia Performance Standards: MM2G2a, MM2G2b, MM2G2c.
How did you use math (Geometry) during your spring break?
Right Triangle Trigonometry
Trigonometric Ratios and Complementary Angles
8 – 6 The Sine and Cosine Ratios. Sine and Cosine Suppose you want to fine the legs, x and y, in a triangle. You can’t find these values using the tangent.
 Old stuff will be used in this section › Triangle Sum Theorem  The sum of the measures of the angles in a triangle is 180° › Pythagorean Theorem 
Holt McDougal Geometry Trigonometric Ratios Warm Up Write each fraction as a decimal rounded to the nearest hundredth Solve each equation
Objective: To use the sine, cosine, and tangent ratios to determine missing side lengths in a right triangle. Right Triangle Trigonometry Sections 9.1.
Chapter 6: Trigonometry 6.2: Trigonometric Applications
Right Triangle Trigonometry
Lesson 7-5 Right Triangle Trigonometry 1 Lesson 7-5 Right Triangle Trigonometry.
Geometry Notes Lesson 5.3A – Trigonometry T.2.G.6 Use trigonometric ratios (sine, cosine, tangent) to determine lengths of sides and measures of angles.
Geometry Notes Lesson 5.3B Trigonometry
The Basics State the RatioSidesAnglesReal-Life
STARTER x x In each triangle, find the length of the side marked x.
Trig Ratios and Cofunction Relationships. Trig Ratios SOH-CAH-TOA.
Warm-Up 3/24-25 What are three basic trigonometric functions and the their ratios? Sine: sin  Cosine: cos  Tangent: tan 
Objectives 1.Differentiate angle of elevation from angle of depression 1) التفريق بين مفهوم زاوية الإرتفاع ومفهوم زاوية الإنخفاض 2. Solve problems involving.
Trigonometric Ratios Trigonometry – The branch of mathematics that deals with the relations between the sides and angles of triangles, and the calculations.
Day and date : Tuesday 10 / 5 / 2011
Use the 3 ratios – sin, cos and tan to solve application problems. Solving Word Problems Choose the easiest ratio(s) to use based on what information you.
By Mr.Bullie. Trigonometry Trigonometry describes the relationship between the side lengths and the angle measures of a right triangle. Right triangles.
Geometry Section 9.5 Trigonometric ratios. The word “trigonometry” comes from two Greek words which mean ___________________ And that is exactly what.
Geometry One is always a long way from solving a problem until one actually has the answer. Stephen Hawking Today: ACT VOCAB CHECK 9.6 Instruction Practice.
GEOMETRY HELP Use the triangle to find sin T, cos T, sin G, and cos G. Write your answer in simplest terms. sin T = = = opposite hypotenuse.
Set calculators to Degree mode.
TRIGONOMETRY Objective: To use the sine, cosine, and tangent ratios to determine missing side lengths in a right triangle.
TRIGONOMETRY BASIC TRIANGLE STUDY: RATIOS: -SINE -COSINE -TANGENT -ANGLES / SIDES SINE LAW: AREA OF A TRIANGLE: - GENERAL -TRIGONOMETRY -HERO’S.
Trigonometry , Ratios & the calculator
TRIGONOMETRY Lesson 2: Solving Right Triangles. Todays Objectives Students will be able to develop and apply the primary trigonometric ratios (sine, cosine,
Warm up Find the missing side.. Skills Check CCGPS Geometry Applications of Right Triangle Trigonometry.
Trigonometry Right-Angled triangles. Next slide Previous slide © Rosemary Vellar Challenge 3 angle side angle side angle side 2 1 Labeling sides Why trig?
Using the triangle at T the right, find: 1. Sin T Cos T 7 3. Tan X 4. Cos X V 24 X 5. Using the triangle A 18 B at the right, solve for x. Show work!
Let's find the distance between two points. So the distance from (-6,4) to (1,4) is 7. (1,4)(-6,4)
Objective: Students will be able to… Use the sine, cosine, and tangent ratios to determine missing side lengths and angle measures in a right triangle.
1. 2. Find. S O H C A H T O A Sin = Cos = Tan =
Using SOHCAHTOA Trigonometry. In each of the following diagrams use SIN to find the angle x correct to 1 decimal place x x x
TRIGONOMETRY Lesson 2: Solving Right Triangles. Todays Objectives Students will be able to develop and apply the primary trigonometric ratios (sine, cosine,
Date: Topic: Trigonometry – Finding Side Lengths (9.6) Warm-up: A B C 4 6 SohCahToa.
MATH 110 UNIT 1 – TRIGONOMETRY Part A. Activity 7 – Find Missing Sides To find an unknown side on a triangle, set up our trigonometric ratios and use.
13.1 Right Triangle Trigonometry. Trigonometry: The study of the properties of triangles and trigonometric functions and their applications. Trigonometric.
(1) Sin, Cos or Tan? x 7 35 o S H O C H A T A O Answer: Tan You know the adjacent and want the opposite.
Daily Check Find the measure of the missing side and hypotenuse for the triangle.
Opener. The Trigonometric Functions we will be looking at SINE COSINE TANGENT.
9.5: Trigonometric Ratios. Vocabulary Trigonometric Ratio: the ratio of the lengths of two sides of a right triangle Angle of elevation: the angle that.
Solving Equations with Trig Functions. Labeling a right triangle A.
Splash Screen. Then/Now You used the Pythagorean Theorem to find missing lengths in right triangles. Find trigonometric ratios using right triangles.
Lesson 9.9 Introduction To Trigonometry Objective: After studying this section, you will be able to understand three basic trigonometric relationships.
[8-3] Trigonometry Mr. Joshua Doudt Geometry pg
A Quick Review ► We already know two methods for calculating unknown sides in triangles. ► We are now going to learn a 3 rd, that will also allow us to.
6.2 Trig of Right Triangles Part 2. Hypotenuse Opposite Adjacent.
6.2 Trig of Right Triangles Part 1. Hypotenuse Opposite Adjacent.
How to use sine, cosine, and tangent ratios to determine side lengths in triangles. Chapter GeometryStandard/Goal: 2.2, 4.1.
LEQ: How can you use trigonometry of right triangles to solve real life problems?
Angles of Elevation and Depression
Applications of Right Triangles
CHAPTER 10 Geometry.
مقدمة: خروج (2-1) النسب المثلثية أب جـ مثلث قائم الزاوية في ب
Day 97 –Trigonometry of right triangle 2
Using Right Triangles in the Real World
Aim: How do we review concepts of trigonometry?
Angles of Elevation and Depression
Trigonometry Ratios in Right Triangles
Unit 3: Right Trigonometric Ratios
Reviewing Trig Ratios 7.4 Chapter 7 Measurement 7.4.1
Right Triangle Trigonometry
Presentation transcript:

TRIGONOMETRY FINDING AN UNKNOWN SIDE Wednesday 18 / 1 / 2012 TRIGONOMETRY FINDING AN UNKNOWN SIDE علم المثلثات إيجاد الضلع المجهول

Objectives The student will be able to: Use trigonometry to find the unknown side ( sides ) in a right angled - triangle 2) To solve a real life problems based on trigonometry الأهداف أن يكون الطالب قادراً على: 1) استخدام علم المثلثات في إيجاد طول الضلع ( الأضلاع ) المجهولة في المثلث القائم الزاوية 2) حل مسائل من الحياة تعتمد على علم المثلثات

Starter Activity [ FROM EMSA EXAMS ]نشاط البداية 20˚ 17 A B 15 X In the triangle BCA, which expression is true? A tan BAC = B sin BAC = C cos BAC = D tan BAC = 15 8 The value of x is A 20 B 70 C 80 D 160 17 15 15 17 8 15

Lesson vocabulary مصطلحات الدرس Opposite side الضلع المقابل Adjacent side الضلع المجاور Theta ( Ɵ ) ثيتا ( رمز للزاوية ) Hypotenuse وتر المثلث القائم الزاوية

الوتر Hypotenuse ( h ) Ɵ الضلع المجاور Adjacent side ( a ) الضلع المقابل Opposite side ( o )

Example O ـــــ Sin Ɵ = h a ـــــ Cos Ɵ = h o ـــــ Tan Ɵ = a اوجد ما يلي :Ɵ بالنسبة للزاوية For the angle Ɵ in the figure find : = ـــــ 5 13 ـــــ O h Sin Ɵ = 5 12 = ـــــ 12 13 ـــــ a h h Cos Ɵ = Ɵ = ـــــ 5 12 ـــــ o a Tan Ɵ = h2 = (5 )2 + ( 12 )2 h2 = 169 h2 = 25 + 144 ∴ h = √169 = 13

Trigonometric ratios can be used to find an unknown side in the right – angled triangle نريد الضلع المقابل Need to find the opposite side يمكن استخدام النسب المثلثية لإيجاد الضلع المجهول في المثلث القائم الزاوية نريد الضلع المجاور Need to find the adjacent side 20˚ x x 70˚ 18 معطى الوتر The hypotenuse is given 10 معطى الضلع المقابل The opposite side is given Use the sin ratio Use the tan ratio

ـــــ ـــــ ــــــــ = ـــــ ــــــــ = ـــــ ــــــــــــ ـــــ Trigonometric ratios can be used to find an unknown side(s) in the right – angled triangle يمكن استخدام النسب المثلثية لإيجاد الضلع ( الأضلاع ) المجهول ( المجهولة ) في المثلث القائم الزاوية Example In the figures below find x correct to 2 dp.اوجد في الأشكال التالية مقرباً لمنزلتين عشريتين x 20˚ x x 70˚ 18 10 ـــــ x 18 ـــــ 10 x ــــــــ = Cos 70 1 ـــــ o a ــــــــ = Tan 20 1 ـــــ a h Tan 20 = Cos 70 = ــــــــــــ 1 × 10 Tan 20 ـــــ 10 x ــــــــــــ 18 ×Cos 70 1 ∴ x = ـــــ x 18 ∴ x = Tan 20 = Cos 70 = ∴ x ≈ 27.47 ∴ x ≈ 6.16

Trigonometry In Our Life Example A flagpole casts a shadow which is 2. 7 m long when the sun is at an angle of 58° in the sky. Estimate the height of the flagpole to the nearest 0.1 m. يكون طول ظل سارية علم هو 2.7 متر عندما تكون زاوية ارتفاع الشمس هي 58 درجة ، قدر لأقرب منزلة عشرية ارتفاع سارية العلم 58˚ 2.7 ـــــ o a ــــــــــــ 2.7 × tan 58 1 Tan 58 = ∴ x = ـــــ x 2.7 Tan 58 = ∴ x ≈ 4.3 m ـــــ x 2.7 x ــــــــ = Tan 58 1

worksheet ( 1 ) Name : ……………..……….……. x x x 20 7 Zayed althani school In the figures below find x correct to 2 dp.اوجد في الأشكال التالية مقرباً لمنزلتين عشريتين 35˚ x x 27˚ 20 7 Zayed althani school Math department Mohamad badawi : hamadaa_math@yahoo.com

( write your answer to 1 d . p ) worksheet ( 2 ) Name : ……………..……….……. ∘ A ladder leans against a wall so that the angle it makes with the ground is 41 , the length of the ladder is 6.5 m how far is the ladder’s base from the wall ? سلّم متكيء على حائط يصنع زاوية قياسها 41 مع الأرض يبلغ طول السلم أوجد بعد قاعدة السلم عن الحائط 6.5 m ( اكتب إجابتك لمنزلة عشرية واحدة ) ( write your answer to 1 d . p ) 6.5 m 41 ∘ a Zayed althani school Math department Mohamad badawi : hamadaa_math@yahoo.com